Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29755974

RESUMO

Anyone working in biosafety capacity enhancement faces the challenge of ensuring that the impact of a capacity enhancing activity continues and becomes sustainable beyond the depletion of funding. Many training efforts face the limitation of one-off events: they only reach those people present at the time. It becomes incumbent upon the trainees to pass on the training to colleagues as best they can, whilst the demand for the training never appears to diminish. However, beyond the initial effort to establish the basic content, repeating capacity enhancement events in different locations is usually not economically feasible. Also, the lack of infrastructure and other resources needed to support a robust training programme hinder operationalizing a "train-the-trainer" approach to biosafety training. One way to address these challenges is through the use of eLearning modules that can be delivered online, globally, continuously, at low cost, and on an as-needed basis to multiple audiences. Once the modules are developed and peer-reviewed, they can be maintained on a remote server and made available to various audiences through a password-protected portal that delivers the programme content, administers preliminary and final exams, and provides the administrative infrastructure to register users and track their progress through the modules. Crucial to the implementation of such an eLearning programme is an approach in which the modules are intentionally developed together as a cohesive curriculum. Once developed, such a curriculum can be released as a stand-alone programme for the training of governmental risk assessors and regulators or used as accredited components in post-graduate degree programmes in biosafety, at minimal cost to the government or university. Examples from the portfolio of eLearning modules developed by the International Centre for Genetic Engineering and Biotechnology (ICGEB) are provided to demonstrate these key features.

2.
Insects ; 9(2)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584706

RESUMO

Environmental stress can affect trait size and cause an increase in the fluctuating asymmetry (FA) of bilateral morphological traits in many animals. For insect parasitoids, feeding of hosts on transgenic maize, expressing a Bacillus thuringiensis toxin gene is a potential environmental stressor. We compared the size of antennae, forewings, and tibia, as well as their FA values, in two parasitoids developed on two East African host species feeding on non-transgenic vs. transgenic maize. The two lepidopteran stem-borer hosts were the native Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and a recent invader, Chilo partellus Swinhoe (Lepidoptera: Crambidae). The two braconid parasitoids were the native, gregarious larval endoparasitoid Cotesia sesamiae and the recently introduced Cotesia flavipes. Both parasitoids attacked both hosts, creating evolutionarily old vs. novel interactions. Transient feeding of hosts on transgenic maize had various effects on FA, depending on trait as well as the host and parasitoid species. These effects were usually stronger in evolutionarily novel host-parasitoid associations than in the older, native ones. These parameters have capacity to more sensitively indicate the effects of potential stressors and merit further consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...