Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Anal ; 11(5): 661-666, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34765280

RESUMO

Considering the frequent use of netupitant in polytherapy, the elucidation of its oxidative metabolization pattern is of major importance. However, there is a lack of published research on the redox behavior of this novel neurokinin-1 receptor antagonist. Therefore, this study was performed to simulate the intensive hepatic biotransformation of netupitant using an electrochemically driven method. Most of the known enzyme-mediated reactions occurring in the liver (i.e., N-dealkylation, hydroxylation, and N-oxidation) were successfully mimicked by the electrolytic cell using a boron-doped diamond working electrode. The products were separated by reversed-phase high-performance liquid chromatography and identified by high-resolution mass spectrometry. Aside from its ability to pinpoint formerly unknown metabolites that could be responsible for the known side effects of netupitant or connected with any new perspective concerning future therapeutic indications, this electrochemical process also represents a facile alternative for the synthesis of oxidation products for further in vitro and in vivo studies.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-908787

RESUMO

Considering the frequent use of netupitant in polytherapy,the elucidation of its oxidative metabolization pattern is of major importance.However,there is a lack of published research on the redox behavior of this novel neurokinin-1 receptor antagonist.Therefore,this study was performed to simulate the intensive hepatic biotransformation of netupitant using an electrochemically driven method.Most of the known enzyme-mediated reactions occurring in the liver(i.e.,N-dealkylation,hydroxylation,and N-oxidation)were successfully mimicked by the electrolytic cell using a boron-doped diamond working electrode.The products were separated by reversed-phase high-performance liquid chromatography and identified by high-resolution mass spectrometry.Aside from its ability to pinpoint formerly unknown metabolites that could be responsible for the known side effects of netupitant or connected with any new perspective concerning future therapeutic indications,this electrochemical process also represents a facile alternative for the synthesis of oxidation products for further in vitro and in vivo studies.

3.
ACS Omega ; 4(19): 18126-18135, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720515

RESUMO

Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 µg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.

4.
Anal Bioanal Chem ; 411(2): 545, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443771

RESUMO

Unfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.

5.
Anal Bioanal Chem ; 410(18): 4495-4507, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736701

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominantly inherited degenerative disease with a slow progression. At the present, there is no commercially available treatment, but sustained effort is currently undertaken for the development of a promising lead compound. In the present paper we report the development of a fast, versatile, and cost-effective affinity capillary electrophoresis (ACE) method for the screening and identification of potential drug candidates targeting pathological ARN probes relevant for DM1. The affinity studies were conducted in physiologically relevant conditions using 50 mM HEPES buffer (pH 7.4) in a fused silica capillary dynamically coated with poly(ethylene oxide), by testing a library of potential ligands against (CUG)50 RNA as target probe with a total run time of 4-5 h/ligand. For the most promising ligands, their affinity parameters were assessed and some results formerly reported on the affinity of pentamidine (PTMD) and neomycin against CUG repeats were confirmed. To the best of the authors' knowledge, the estimated binding stoichiometry for some of the tested compounds (i.e., ~ 121:1 for PTMD against the tested RNA probe) is reported for the first time. Additionally, the potential of a novel pentamidine like compound, namely 1,2-ethane bis-1-amino-4-benzamidine (EBAB) with much lower in vivo toxicity than its parent compound has also been confirmed studying its effect on a live cell model by fluorescence microscopy. Further tests, such as the evaluation of the rescue in the mis-splicing of the involved genes, can be performed to corroborate the potential therapeutic value of EBAB in DM1 treatment. Graphical abstract ᅟ.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Distrofia Miotônica/tratamento farmacológico , Benzamidinas/química , Benzamidinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/economia , Eletroforese Capilar/economia , Células HeLa , Humanos , Ligantes , Pentamidina/química , Pentamidina/farmacologia , Motivos de Ligação ao RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...