Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
medRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952781

RESUMO

Background: The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. Objective: To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multi-ethnic cohorts and responses to OIT. Methods: Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N=384), a Costa Rican cohort of children with asthma (N=1040), and a peanut OIT trial (N=20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterwards). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. Results: Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q=2.4×10 -20 ) and linoleic acid derivatives (q=3.8×10 -5 ) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q=4.1×10 -8 ), eicosanoids (q=7.9×10 -7 ), and histidine pathways (q=0.015). In particular, the bile acid lithocholate (4.97[1.93,16.14], p=0.0027), the eicosanoid leukotriene B4 (3.21[1.38,8.38], p=0.01), and the histidine metabolite urocanic acid (22.13[3.98,194.67], p=0.0015) were higher in SU. Conclusions: We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy. Key Messages: - Compared with unaffected controls, children with food allergy demonstrated higher levels of bile acids and distinct histidine/urocanic acid profiles, suggesting a potential role of these metabolites in food allergy. - In participants receiving oral immunotherapy for food allergy, those who were able to maintain tolerance-even after stopping therapyhad lower overall levels of bile acid and histidine metabolites, with the exception of lithocholic acid and urocanic acid, two metabolites that have roles in T cell differentiation that may increase the likelihood of remission in immunotherapy. Capsule summary: This is the first study of plasma metabolomic profiles of responses to OIT in individuals with IgE-mediated food allergy. Identification of immunomodulatory metabolites in allergic tolerance may help identify mechanisms of tolerance and guide future therapeutic development.

2.
bioRxiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38979172

RESUMO

Adult stem cells play a crucial role in tissue homeostasis and repair through multiple mechanisms. In addition to being able to replace aged or damaged cells, stem cells provide signals that contribute to the maintenance and function of neighboring cells. In the lung, airway basal stem cells also produce cytokines and chemokines in response to inhaled irritants, allergens, and pathogens, which affect specific immune cell populations and shape the nature of the immune response. However, direct cell-to-cell signaling through contact between airway basal stem cells and immune cells has not been demonstrated. Recently, a unique population of intraepithelial airway macrophages (IAMs) has been identified in the murine trachea. Here, we demonstrate that IAMs require Notch signaling from airway basal stem cells for maintenance of their differentiated state and function. Furthermore, we demonstrate that Notch signaling between airway basal stem cells and IAMs is required for antigen-induced allergic inflammation only in the trachea where the basal stem cells are located whereas allergic responses in distal lung tissues are preserved consistent with a local circuit linking stem cells to proximate immune cells. Finally, we demonstrate that IAM-like cells are present in human conducting airways and that these cells display Notch activation, mirroring their murine counterparts. Since diverse lung stem cells have recently been identified and localized to specific anatomic niches along the proximodistal axis of the respiratory tree, we hypothesize that the direct functional coupling of local stem cell-mediated regeneration and immune responses permits a compartmentalized inflammatory response.

3.
Nat Med ; 30(5): 1349-1362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724705

RESUMO

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Assuntos
Colite , Inibidores de Checkpoint Imunológico , Mucosa Intestinal , Análise de Célula Única , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Colite/induzido quimicamente , Colite/imunologia , Colite/genética , Colite/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Feminino , Masculino , Perfilação da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Transcriptoma , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Colo/patologia , Colo/imunologia , Colo/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia
4.
Org Lett ; 26(15): 3299-3303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38546413

RESUMO

Acyl fluorides are important reagents due to their unique balance between reactivity and stability. Here, we report a copper-catalyzed carbonylative coupling strategy for synthesizing acyl fluorides under photoirradiation. Alkyl iodides were transformed in high yields into acyl fluorides by using a commercially available copper precatalyst (CuBr·SMe2) and a readily available fluoride salt (KF) at ambient temperature and mild CO pressure (6 atm) under blue light irradiation.

5.
Nat Commun ; 15(1): 1315, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351122

RESUMO

Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth's most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.

6.
Chem Sci ; 15(5): 1820-1828, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303935

RESUMO

As part of the nitrogen cycle, environmental nitrous oxide (N2O) undergoes the N2O reduction reaction (N2ORR) catalyzed by nitrous oxide reductase, a metalloenzyme whose catalytic active site is a tetranuclear copper-sulfide cluster (CuZ). On the other hand, heterogeneous Cu catalysts on oxide supports are known to mediate decomposition of N2O (deN2O) by disproportionation. In this study, a CuZ model system supported by triazenide ligands is characterized by X-ray crystallography, NMR and EPR spectroscopies, and electronic structure calculations. Although the triazenide-ligated Cu4(µ4-S) clusters are closely related to previous formamidinate derivatives, which differ only in replacement of a remote N atom for a CH group, divergent reactivity with N2O is observed. Whereas the formamidinate-ligated clusters were previously shown to mediate single-turnover N2ORR, the triazenide-ligated clusters are found to mediate deN2O, behavior that was previously unknown to natural or synthetic copper-sulfide clusters. The reaction pathway for deN2O by this model system, including previously unidentified transition state models for N2O activation in N-O cleavage and O-O coupling steps, are included. The divergent reactivity of these two related but subtly different systems point to key factors influencing behavior of Cu-based catalysts for N2ORR (i.e., CuZ) and deN2O (e.g., CuO/CeO2).

7.
J Allergy Clin Immunol ; 153(3): 809-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944567

RESUMO

BACKGROUND: Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE: We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS: We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS: Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS: We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.


Assuntos
Asma , Hipersensibilidade , Adulto , Criança , Humanos , Animais , Camundongos , Asma/genética , Hipersensibilidade/genética , Estudos de Associação Genética , Fenótipo , Alérgenos , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Receptores do Fator de Necrose Tumoral
8.
Angew Chem Int Ed Engl ; 62(51): e202313744, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37938103

RESUMO

Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3 )4 ]- (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2-3 eV per CF3 , completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3 P)3 CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.

9.
iScience ; 26(11): 108217, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953958

RESUMO

Lyme disease is caused by the bacterial pathogen Borrelia burgdorferi, which can be readily modeled in laboratory mice. In order to understand the cellular and transcriptional changes that occur during B. burgdorferi infection, we conducted single-cell RNA sequencing (scRNA-seq) of ankle joints of infected C57BL/6 mice over time. We found that macrophages/monocytes, T cells, synoviocytes and fibroblasts all showed significant differences in gene expression of both inflammatory and non-inflammatory genes that peaked early and returned to baseline before the typical resolution of arthritis. Predictions of cellular interactions showed that macrophages appear to communicate extensively between different clusters of macrophages as well as with fibroblasts and synoviocytes. Our data give unique insights into the interactions between B. burgdorferi and the murine immune system over time and allow for a better understanding of mechanisms by which the dysregulation of the immune response may lead to prolonged symptoms in some patients.

10.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873428

RESUMO

Tissue-resident memory T (T RM ) cells play a central role in immune responses to pathogens across all barrier tissues after infection. However, the underlying mechanisms that drive T RM differentiation and priming for their recall effector function remains unclear. In this study, we leveraged both newly generated and publicly available single-cell RNA-sequencing (scRNAseq) data generated across 10 developmental time points to define features of CD8 T RM across both skin and small-intestine intraepithelial lymphocytes (siIEL). We employed linear modeling to capture temporally-associated gene programs that increase their expression levels in T cell subsets transitioning from an effector to a memory T cell state. In addition to capturing tissue-specific gene programs, we defined a consensus T RM signature of 60 genes across skin and siIEL that can effectively distinguish T RM from circulating T cell populations, providing a more specific T RM signature than what was previously generated by comparing bulk T RM to naïve or non-tissue resident memory populations. This updated T RM signature included the AP-1 transcription factor family members Fos, Fosb and Fosl2 . Moreover, ATACseq analysis detected an enrichment of AP-1-specific motifs at open chromatin sites in mature T RM . CyCIF tissue imaging detected nuclear co-localization of AP-1 members Fosb and Junb in resting CD8 T RM >100 days post-infection. Taken together, these results reveal a critical role of AP-1 transcription factor members in T RM biology and suggests a novel mechanism for rapid reactivation of resting T RM in tissue upon antigen encounter.

11.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37790460

RESUMO

Immune checkpoint inhibitors (ICIs) are widely used anti-cancer therapies that can cause morbid and potentially fatal immune-related adverse events (irAEs). ICI-related myocarditis (irMyocarditis) is uncommon but has the highest mortality of any irAE. The pathogenesis of irMyocarditis and its relationship to anti-tumor immunity remain poorly understood. We sought to define immune responses in heart, tumor, and blood during irMyocarditis and identify biomarkers of clinical severity by leveraging single-cell (sc)RNA-seq coupled with T cell receptor (TCR) sequencing, microscopy, and proteomics analysis of 28 irMyocarditis patients and 23 controls. Our analysis of 284,360 cells from heart and blood specimens identified cytotoxic T cells, inflammatory macrophages, conventional dendritic cells (cDCs), and fibroblasts enriched in irMyocarditis heart tissue. Additionally, potentially targetable, pro-inflammatory transcriptional programs were upregulated across multiple cell types. TCR clones enriched in heart and paired tumor tissue were largely non-overlapping, suggesting distinct T cell responses within these tissues. We also identify the presence of cardiac-expanded TCRs in a circulating, cycling CD8 T cell population as a novel peripheral biomarker of fatality. Collectively, these findings highlight critical biology driving irMyocarditis and putative biomarkers for therapeutic intervention.

12.
Curr Opin Allergy Clin Immunol ; 23(6): 500-506, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823528

RESUMO

PURPOSE OF REVIEW: Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS: Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY: ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.


Assuntos
Imunodeficiência de Variável Comum , Doenças Pulmonares Intersticiais , Doenças da Imunodeficiência Primária , Humanos , Autoimunidade , Imunomodulação , Doenças Pulmonares Intersticiais/diagnóstico
13.
Chem Commun (Camb) ; 59(80): 11932-11946, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37727948

RESUMO

Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.

14.
Inorg Chem ; 62(37): 15267-15276, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37651726

RESUMO

Studies of multinuclear metal complexes are greatly enhanced by resonant diffraction measurements, which probe X-ray absorption profiles of crystallographically independent metal sites within a cluster. In particular, X-ray diffraction anomalous fine structure (DAFS) analysis provides data that can be interpreted akin to site-specific XANES, allowing for differences in metal K-edge resonances to be deconvoluted even for different metal sites within a homometallic system. Despite the prevalence of Cu-containing clusters in biology and energy science, DAFS has yet to be used to analyze multicopper complexes of any type until now. Here, we report an evaluation of trends using a series of strategically chosen Cu(I) and Cu(II) complexes to determine how energy dependencies of anomalous scattering factors are impacted by coordination geometry, ligand shell, cluster nuclearity, and oxidation state. This calibration data is used to analyze a formally tricopper(I) complex that was found by DAFS to be site-differentiated due to the unsymmetrical influence on different Cu sites of the electrostatic field from a proximal K+ cation.

15.
Sci Immunol ; 8(83): eabq6352, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146132

RESUMO

Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.


Assuntos
Asma , Hipersensibilidade , Humanos , Antioxidantes , Asma/genética , Alérgenos , Inflamação
16.
Inorg Chem ; 62(16): 6332-6338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026841

RESUMO

Formate dehydrogenase (FDH) enzymes catalyze redox interconversion of CO2 and HCO2-, with a key mechanistic step being the transfer of H- from HCO2- to an oxidized active site featuring a [MVI≡S] group in a sulfur-rich environment (M = Mo or W). Here, we report reactivity studies with HCO2- and other reducing agents of a synthetic [WVI≡S] model complex ligated by dithiocarbamate (dtc) ligands. Reactions of [WVIS(dtc)3][BF4] (1) conducted in MeOH solvent generated [WVIS(S2)(dtc)2] (2) and [WVS(µ-S)(dtc)]2 (3) products by a solvolysis pathway that was accelerated by the presence of [Me4N][HCO2] but did not require it. Under MeOH-free conditions, the reaction of 1 with [Et4N][HCO2] produced some [WIV(µ-S)(µ-dtc)(dtc)]2 (4), but predominantly [WV(dtc)4]+ (5), along with stoichiometric CO2 detected by headspace gas chromatography (GC) analysis. Stronger hydride sources such as K-selectride generated the more reduced analogue, 4, exclusively. The reaction of 1 with the electron donor, CoCp2, also produced 4 and 5 in varying amounts depending on reaction conditions. These results indicate that formates and borohydrides act as electron donors rather than hydride donors toward 1, an outcome that diverges from the behavior of FDHs. The difference is ascribed to the more oxidizing potential of [WVI≡S] complex 1 when supported by monoanionic dtc ligands that allows electron transfer to outcompete hydride transfer, as compared to the more reduced [MVI≡S] active sites supported by dianionic pyranopterindithiolate ligands in FDHs.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Domínio Catalítico , Formiato Desidrogenases/química , Oxirredução , Compostos de Tungstênio/química , Tiocarbamatos/química
17.
J Am Chem Soc ; 145(17): 9423-9427, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075476

RESUMO

Acid anhydrides are valuable in the chemical industry for their role in synthesizing polymers, pharmaceuticals, and other commodities, but their syntheses often involve multiple steps with precious metal catalysts. The simplest anhydride, acetic anhydride, is currently produced by two Rh-catalyzed carbonylation reactions on a bulk scale for its use in synthesizing products ranging from aspirin to cellulose acetate. Here, we report a light-mediated, Cu-catalyzed process for producing aliphatic, symmetric acid anhydrides directly by carbonylation of alkyl (pseudo)halides in a single step without any precious metal additives. The transformation requires only simple Cu salts and abundant bases to generate a heterogeneous Cu0 photocatalyst in situ, maintains high efficiency and selectivity upon scale-up, and operates by a radical mechanism with several beneficial features. This discovery will enable the engineering of bulk processes for producing commodity anhydrides efficiently and sustainably.

18.
Dalton Trans ; 51(16): 6129-6147, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35355033

RESUMO

The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.


Assuntos
Complexos de Coordenação , Metaloproteínas , Dióxido de Carbono/química , Complexos de Coordenação/química , Gases , Metais/química
20.
J Am Chem Soc ; 144(7): 3210-3221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157448

RESUMO

Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(µ:κ2-O2C)Fp (3) and LdippAl(Me)(µ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Cicloexenos/química , Compostos de Epóxi/química , Radicais Livres/química , Alumínio/química , Complexos de Coordenação/síntese química , Ferro/química , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...