Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776620

RESUMO

The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.


Assuntos
Proteínas de Drosophila , Fator de Transcrição Associado à Microftalmia , Proteínas de Sinalização YAP , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Olho/metabolismo , Olho/crescimento & desenvolvimento , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Epitélio/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio
2.
Artigo em Inglês | MEDLINE | ID: mdl-37830236

RESUMO

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

3.
Biol Open ; 12(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912729

RESUMO

The Drosophila eye develops from the larval eye disc, a flattened vesicle comprised of continuous retinal and peripodial epithelia (PE). The PE is an epithelium that plays a supporting role in retinal neurogenesis, but gives rise to cuticle in the adult. We report here that the PE is also necessary to preserve the morphology of the retinal epithelium. Depletion of the adherens junction (AJ) components ß-Catenin (ß-Cat), DE-Cadherin or α-Catenin from the PE leads to altered disc morphology, characterized by retinal displacement (RDis); so too does loss of the Ajuba protein Jub, an AJ-associated regulator of the transcriptional coactivator Yorkie (Yki). Restoring AJs or overexpressing Yki in ß-Cat deficient PE results in suppression of RDis. Additional suppressors of AJ-dependent RDis include knockdown of Rho kinase (Rok) and Dystrophin (Dys). Furthermore, knockdown of ßPS integrin (Mys) from the PE results in RDis, while overexpression of Mys can suppress RDis induced by the loss of ß-Cat. We thus propose that AJ-Jub-Yki signaling in PE cells regulates PE cell contractile properties and/or attachment to the extracellular matrix to promote normal eye disc morphology.


Assuntos
Junções Aderentes , Proteínas de Drosophila , Animais , Junções Aderentes/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transativadores/metabolismo , Transdução de Sinais , Epitélio/metabolismo , Drosophila/metabolismo
4.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36205125

RESUMO

Hippo-Yorkie (Hpo-Yki) signaling is central to diverse developmental processes. Although its redeployment has been amply demonstrated, its context-specific regulation remains poorly understood. The Drosophila eye disc is a continuous epithelium folded into two layers, the peripodial epithelium (PE) and the retinal progenitor epithelium. Here, Yki acts in the PE, first to promote PE identity by suppressing retina fate, and subsequently to maintain proper disc morphology. In the latter process, loss of Yki results in the displacement of a portion of the differentiating retinal epithelium onto the PE side. We show that Protein Phosphatase 2A (PP2A) complexes comprising different substrate-specificity B-type subunits govern the Hpo-Yki axis in this context. These include holoenzymes containing the B‴ subunit Cka and those containing the B' subunits Wdb or Wrd. Whereas PP2A(Cka), as part of the STRIPAK complex, is known to regulate Hpo directly, PP2A(Wdb) acts genetically upstream of the antagonistic activities of the Hpo regulators Sav and Rassf. These in vivo data provide the first evidence of PP2A(B') heterotrimer function in Hpo pathway regulation and reveal pathway diversification at distinct developmental times in the same tissue.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
PLoS Genet ; 17(7): e1009678, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260587

RESUMO

Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C. elegans. Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-ß locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adaptação Fisiológica/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Processos de Crescimento Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Larva/crescimento & desenvolvimento , Feromônios/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia
6.
J Cell Sci ; 133(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32184260

RESUMO

The specification of organs, tissues and cell types results from cell fate restrictions enacted by nuclear transcription factors under the control of conserved signaling pathways. The progenitor epithelium of the Drosophila compound eye, the eye imaginal disc, is a premier model for the study of such processes. Early in development, apposing cells of the eye disc are established as either retinal progenitors or support cells of the peripodial epithelium (PE), in a process whose genetic and mechanistic determinants are poorly understood. We have identified protein phosphatase 2A (PP2A), and specifically a STRIPAK-PP2A complex that includes the scaffolding and substrate-specificity components Cka, Strip and SLMAP, as a critical player in the retina-PE fate choice. We show that these factors suppress ectopic retina formation in the presumptive PE and do so via the Hippo signaling axis. STRIPAK-PP2A negatively regulates Hippo kinase, and consequently its substrate Warts, to release the transcriptional co-activator Yorkie into the nucleus. Thus, a modular higher-order PP2A complex refines the activity of this general phosphatase to act in a precise specification of cell fate.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Adaptadoras de Transdução de Sinal , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retina/metabolismo
7.
BMC Dev Biol ; 19(1): 1, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30669963

RESUMO

BACKGROUND: BMP signaling is involved in myriad metazoan developmental processes, and study of this pathway in Drosophila has contributed greatly to our understanding of its molecular and genetic mechanisms. These studies have benefited not only from Drosophila's advanced genetic tools, but from complimentary in vitro culture systems. However, the commonly-used S2 cell line is not intrinsically sensitive to the major BMP ligand Dpp and must therefore be augmented with exogenous pathway components for most experiments. RESULTS: Herein we identify and characterize the responses of Drosophila ML-DmD17-c3 cells, which are sensitive to Dpp stimulation and exhibit characteristic regulation of BMP target genes including Dad and brk. Dpp signaling in ML-DmD17-c3 cells is primarily mediated by the receptors Put and Tkv, with additional contributions from Wit and Sax. Furthermore, we report complex regulatory feedback on core pathway genes in this system. CONCLUSIONS: Native ML-DmD17-c3 cells exhibit robust transcriptional responses to BMP pathway induction. We propose that ML-DmD17-c3 cells are well-suited for future BMP pathway analyses.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animais , Linhagem Celular , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
8.
Genesis ; 54(11): 589-592, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696669

RESUMO

A host of classical and molecular genetic tools make Drosophila a tremendous model for the dissection of gene activity. In particular, the FLP-FRT technique for mitotic recombination has greatly enhanced gene loss-of-function analysis. This technique efficiently induces formation of homozygous mutant clones in tissues of heterozygous organisms. However, the dependence of the FLP-FRT method on cell division, and other constraints, also impose limits on its effectiveness. We describe here the generation and testing of tools for Mutant Analysis by Rescue Gene Excision (MARGE), an approach whereby mutant cells are formed by loss of a rescue transgene in a homozygous mutant organism. Rescue-transgene loss can be induced in any tissue or cell-type and at any time during development or in the adult using available heat-shock-induced or tissue-specific flippases, or combinations of UAS-FLP with Gal4 and Gal80ts reagents. The simultaneous loss of a constitutive fluorescence marker (GFP or RFP) identifies the mutant cells. We demonstrate the efficacy of the MARGE technique by flip-out (clonal and disc-wide) of a Ubi-GFP-carrying construct in imaginal discs, and by inducing a known yki mutant phenotype in the Drosophila ovary.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Mosaicismo , Proteínas Nucleares/genética , Recombinação Genética , Transativadores/genética , Animais , Análise Mutacional de DNA , Feminino , Homozigoto , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fenótipo , Proteínas de Sinalização YAP
9.
G3 (Bethesda) ; 6(5): 1475-87, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26976437

RESUMO

Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Estudos de Associação Genética , Testes Genéticos , Feromônios/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico , Teste de Complementação Genética , Ligação Genética , Genoma Helmíntico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Transdução de Sinais/efeitos dos fármacos
10.
Elife ; 42015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335407

RESUMO

Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-ß and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais , Animais , Insulinas , Receptor de Insulina/metabolismo , Células Receptoras Sensoriais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
12.
Nat Neurosci ; 18(6): 807-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938884

RESUMO

Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idade de Início , Alelos , Estudos de Coortes , DNA/genética , Regulação da Expressão Gênica/fisiologia , Genes Reporter/genética , Humanos , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica
13.
Curr Biol ; 24(21): 2509-17, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25438941

RESUMO

BACKGROUND: Adaptive behavioral prioritization requires flexible outputs from fixed neural circuits. In C. elegans, the prioritization of feeding versus mate searching depends on biological sex (males will abandon food to search for mates, whereas hermaphrodites will not) as well as developmental stage and feeding status. Previously, we found that males are less attracted than hermaphrodites to the food-associated odorant diacetyl, suggesting that sensory modulation may contribute to behavioral prioritization. RESULTS: We show that somatic sex acts cell autonomously to reconfigure the olfactory circuit by regulating a key chemoreceptor, odr-10, in the AWA neurons. Moreover, we find that odr-10 has a significant role in food detection, the regulation of which contributes to sex differences in behavioral prioritization. Overexpression of odr-10 increases male food attraction and decreases off-food exploration; conversely, loss of odr-10 impairs food taxis in both sexes. In larvae, both sexes prioritize feeding over exploration; correspondingly, the sexes have equal odr-10 expression and food attraction. Food deprivation, which transiently favors feeding over exploration in adult males, increases male food attraction by activating odr-10 expression. Furthermore, the weak expression of odr-10 in well-fed adult males has important adaptive value, allowing males to efficiently locate mates in a patchy food environment. CONCLUSIONS: We find that modulated expression of a single chemoreceptor plays a key role in naturally occurring variation in the prioritization of feeding and exploration. The convergence of three independent regulatory inputs--somatic sex, age, and feeding status--on chemoreceptor expression highlights sensory function as a key source of plasticity in neural circuits.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Células Quimiorreceptoras/metabolismo , Fome , Adaptação Fisiológica , Animais , Caenorhabditis elegans/metabolismo , Feminino , Masculino , Fatores Sexuais , Comportamento Sexual Animal , Fatores de Tempo
14.
Methods Mol Biol ; 1068: 273-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24014369

RESUMO

Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.


Assuntos
Caenorhabditis elegans/embriologia , Larva/metabolismo , Feromônios/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Larva/crescimento & desenvolvimento , Reprodução
15.
Neuron ; 75(4): 585-92, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22920251

RESUMO

Pheromone responses are highly context dependent. For example, the C. elegans pheromone ascaroside C9 (ascr#3) is repulsive to wild-type hermaphrodites, attractive to wild-type males, and usually neutral to "social" hermaphrodites with reduced activity of the npr-1 neuropeptide receptor gene. We show here that these distinct behavioral responses arise from overlapping push-pull circuits driven by two classes of pheromone-sensing neurons. The ADL sensory neurons detect C9 and, in wild-type hermaphrodites, drive C9 repulsion through their chemical synapses. In npr-1 mutant hermaphrodites, C9 repulsion is reduced by the recruitment of a gap junction circuit that antagonizes ADL chemical synapses. In males, ADL sensory responses are diminished; in addition, a second pheromone-sensing neuron, ASK, antagonizes C9 repulsion. The additive effects of these antagonistic circuit elements generate attractive, repulsive, or neutral pheromone responses. Neuronal modulation by circuit state and sex, and flexibility in synaptic output pathways, may permit small circuits to maximize their adaptive behavioral outputs.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neurônios/fisiologia , Neurotransmissores/metabolismo , Feromônios/farmacologia , Caracteres Sexuais , Sinapses/efeitos dos fármacos , Análise de Variância , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Complemento C9/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores Imunológicos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Mutação/genética , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Feromônios/metabolismo , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Receptores de Neuropeptídeo Y/genética , Receptores Odorantes/genética , Sinapses/classificação , Sinapses/genética , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório/genética
16.
Neurobiol Dis ; 45(2): 711-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22062772

RESUMO

Progranulin haploinsufficiency is a common cause of familial frontotemporal dementia (FTD), but the role of progranulin in the brain is poorly understood. To investigate the role of murine progranulin (Grn) in the CNS in vivo, we generated mice targeted at the progranulin locus (Grn) using a gene-trap vector. Constitutive progranulin knockout mice (GrnKO) show moderate abnormalities in anxiety-related behaviors, social interactions, motor coordination, and novel object recognition at 8months of age, many of which differ between males and females. Analysis of synaptic transmission in 10-12 month old GrnKO male mice indicates altered synaptic connectivity and impaired synaptic plasticity. Additionally, apical dendrites in pyramidal cells in the CA1 region of the hippocampus in GrnKO males display an altered morphology and have significantly decreased spine density compared to wild-type (WT) mice. The observed changes in behavior, synaptic transmission, and neuronal morphology in GrnKO mice occur prior to neuropathological abnormalities, most of which are apparent at 18 but not at 8 months of age. We conclude that progranulin deficiency leads to reduced synaptic connectivity and impaired plasticity, which may contribute to FTD pathology in human patients.


Assuntos
Comportamento Animal/fisiologia , Demência Frontotemporal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neurônios/patologia , Sinapses/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Progranulinas , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/genética , Sinapses/metabolismo
17.
BMC Genomics ; 12: 475, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21958154

RESUMO

BACKGROUND: The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in Drosophila different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in Drosophila Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response. RESULTS: Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3rd instar larvae and we show that 20E-induced levels of EcR isoforms EcR-RA, ER-RC, and EcR-RD/E differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types. CONCLUSIONS: We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Ecdisterona/análogos & derivados , Ecdisterona/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Glândulas Salivares/efeitos dos fármacos
18.
Hum Mol Genet ; 19(4): 609-22, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19934114

RESUMO

Selective degeneration of striatal neurons is a pathologic hallmark of Huntington disease (HD). The exact mechanism(s) behind this specific neurodegeneration is still unknown. Expression studies of diseased human post-mortem brain, as well as different mouse models exhibiting striatal degeneration, have demonstrated changes in the expression of many important genes with a large proportion of changes being observed in the striatal-enriched genes. These investigations have raised questions about how enrichment of particular transcripts in the striatum can lead to its selective vulnerability to neurodegeneration. Monitoring the expression changes of striatal-enriched genes during the course of the disease may be informative about their potential involvement in selective degeneration. In this study, we analyzed a Serial Analysis of Gene Expression (SAGE) database (www.mouseatlas.org) and compared the mouse striatum to 18 other brain regions to generate a novel list of striatal-enriched transcripts. These novel striatal-enriched transcripts were subsequently evaluated for expression changes in the YAC128 mouse model of HD, and differentially expressed transcripts were further examined in human post-mortem caudate samples. We identified transcripts with altered expression in YAC128 mice, which also showed consistent expression changes in human post-mortem tissue. The identification of novel striatal-enriched genes with altered expression in HD offers new avenues of study, leading towards a better understanding of specific pathways involved in the selective degeneration of striatal neurons in HD.


Assuntos
Corpo Estriado/metabolismo , Perfilação da Expressão Gênica , Doença de Huntington/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/metabolismo , Camundongos
19.
BMC Genomics ; 8: 126, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17519034

RESUMO

BACKGROUND: Expansion of polyglutamine-encoding CAG trinucleotide repeats has been identified as the pathogenic mutation in nine different genes associated with neurodegenerative disorders. The majority of individuals clinically diagnosed with spinocerebellar ataxia do not have mutations within known disease genes, and it is likely that additional ataxias or Huntington disease-like disorders will be found to be caused by this common mutational mechanism. We set out to determine the length distributions of CAG-polyglutamine tracts for the entire human genome in a set of healthy individuals in order to characterize the nature of polyglutamine repeat length variation across the human genome, to establish the background against which pathogenic repeat expansions can be detected, and to prioritize candidate genes for repeat expansion disorders. RESULTS: We found that repeats, including those in known disease genes, have unique distributions of glutamine tract lengths, as measured by fragment analysis of PCR-amplified repeat regions. This emphasizes the need to characterize each distribution and avoid making generalizations between loci. The best predictors of known disease genes were occurrence of a long CAG-tract uninterrupted by CAA codons in their reference genome sequence, and high glutamine tract length variance in the normal population. We used these parameters to identify eight priority candidate genes for polyglutamine expansion disorders. Twelve CAG-polyglutamine repeats were invariant and these can likely be excluded as candidates. We outline some confusion in the literature about this type of data, difficulties in comparing such data between publications, and its application to studies of disease prevalence in different populations. Analysis of Gene Ontology-based functions of CAG-polyglutamine-containing genes provided a visual framework for interpretation of these genes' functions. All nine known disease genes were involved in DNA-dependent regulation of transcription or in neurogenesis, as were all of the well-characterized priority candidate genes. CONCLUSION: This publication makes freely available the normal distributions of CAG-polyglutamine repeats in the human genome. Using these background distributions, against which pathogenic expansions can be identified, we have begun screening for mutations in individuals clinically diagnosed with novel forms of spinocerebellar ataxia or Huntington disease-like disorders who do not have identified mutations within the known disease-associated genes.


Assuntos
Genoma Humano , Peptídeos/genética , Polimorfismo de Fragmento de Restrição , Repetições de Trinucleotídeos , Sequência de Bases , Mapeamento Cromossômico , Bases de Dados Genéticas , Redes Reguladoras de Genes , Genes , Doenças Genéticas Inatas/genética , Humanos , Dados de Sequência Molecular , Distribuições Estatísticas
20.
BMC Neurol ; 6: 32, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16945149

RESUMO

BACKGROUND: Many cases of frontotemporal dementia (FTD) are familial, often with an autosomal dominant pattern of inheritance. Some are due to a mutation in the tau- encoding gene, on chromosome 17, and show an accumulation of abnormal tau in brain tissue (FTDP-17T). Most of the remaining familial cases do not exhibit tau pathology, but display neuropathology similar to patients with dementia and motor neuron disease, characterized by the presence of ubiquitin-immunoreactive (ub-ir), dystrophic neurites and neuronal cytoplasmic inclusions in the neocortex and hippocampus (FTLD-U). Recently, we described a subset of patients with familial FTD with autopsy-proven FTLD-U pathology and with the additional finding of ub-ir neuronal intranuclear inclusions (NII). NII are a characteristic feature of several other neurodegenerative conditions for which the genetic basis is abnormal expansion of a polyglutamine-encoding trinucleotide repeat region. The genetic basis of familial FTLD-U is currently not known, however the presence of NII suggests that a subset of cases may represent a polyglutamine expansion disease. METHODS: We studied DNA and post mortem brain tissue from 5 affected members of 4 different families with NII and one affected individual with familial FTLD-U without NII. Patient DNA was screened for CAA/CAG trinucleotide expansion in a set of candidate genes identified using a genome-wide computational approach. Genes containing CAA/CAG trinucleotide repeats encoding at least five glutamines were examined (n = 63), including the nine genes currently known to be associated with human disease. CAA/CAG tract sizes were compared with published normal values (where available) and with those of healthy controls (n = 94). High-resolution agarose gel electrophoresis was used to measure allele size (number of CAA/CAG repeats). For any alleles estimated to be equal to or larger than the maximum measured in the control population, the CAA/CAG tract length was confirmed by capillary electrophoresis. In addition, immunohistochemistry using a monoclonal antibody that recognizes proteins containing expanded polyglutamines (1C2) was performed on sections of post mortem brain tissue from subjects with NII. RESULTS: No significant polyglutamine-encoding repeat expansions were identified in the DNA from any of our FTLD-U patients. NII in the FTLD-U cases showed no 1C2 immunoreactivity. CONCLUSION: We find no evidence to suggest that autosomal dominant FTLD-U with NII is a polyglutamine expansion disease.


Assuntos
Demência/genética , Demência/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Peptídeos/genética , Encéfalo/patologia , Diagnóstico Diferencial , Humanos , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...