Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515283

RESUMO

A metagenomic analysis of the virome of honey bees (Apis mellifera) from an apiary with high rates of unexplained colony losses identified a novel RNA virus. The virus, which was named Apis mellifera solinvivirus 1 (AmSV1), contains a 10.6 kb positive-strand genomic RNA with a single ORF coding for a polyprotein with the protease, helicase, and RNA-dependent RNA polymerase domains, as well as a single jelly-roll structural protein domain, showing highest similarity with viruses in the family Solinviviridae. The injection of honey bee pupae with AmSV1 preparation showed an increase in virus titer and the accumulation of the negative-strand of AmSV1 RNA 3 days after injection, indicating the replication of AmSV1. In the infected worker bees, AmSV1 was present in heads, thoraxes, and abdomens, indicating that this virus causes systemic infection. An analysis of the geographic and historic distribution of AmSV1, using over 900 apiary samples collected across the United States, showed AmSV1 presence since at least 2010. In the year 2021, AmSV1 was detected in 10.45% of apiaries (95%CI: 8.41-12.79%), mostly sampled in June and July in Northwestern and Northeastern United States. The diagnostic methods and information on the AmSV1 distribution will be used to investigate the connection of AmSV1 to honey bee colony losses.


Assuntos
Vírus de RNA , Abelhas/genética , Animais , Estados Unidos , Vírus de RNA/genética , Metagenoma , RNA
2.
Sci Rep ; 12(1): 18660, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376353

RESUMO

The high loss rates of honey bee colonies drive research for solutions aimed to mitigate these losses. While honey bee colonies are superorganisms, experiments that measure the response to stressors often use caged individuals to allow for inference in a controlled setting. In an initial experiment, we showed that caged honey bees provisioned with various types of water (deionized, 1%NaCl in deionized, or tap) have greater median lifespans than those that did not. While researching the history of water provisioning in cage studies, we observed that the median lifespan of caged honey bees has been declining in the US since the 1970's, from an average of 34.3 days to 17.7 days. In response to this, we again turned to historical record and found a relationship between this trend and a decline in the average amount of honey produced per colony per year in the US over the last 5 decades. To understand the relationship between individual bee lifespan and colony success we used an established honey bee population model (BEEHAVE) to simulate the predicted effects of decreased worker lifespans. Declines in downstream measures of colony population, overall honey production, and colony lifespan resulted from reduced worker bee lifespans. Modeled colony lifespans allowed us to estimate colony loss rates in a beekeeping operation where lost colonies are replaced annually. Resulting loss rates were reflective of what beekeepers' experience today, which suggests the average lifespan of individual bees plays an important role in colony success.


Assuntos
Mel , Longevidade , Abelhas , Animais , Água , Criação de Abelhas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...