Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(23): 237202, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603174

RESUMO

Spin-orbit interaction and structure inversion asymmetry in combination with magnetic ordering is a promising route to novel materials with highly mobile spin-polarized carriers at the surface. Spin-resolved measurements of the photoemission current from the Si-terminated surface of the antiferromagnet TbRh_{2}Si_{2} and their analysis within an ab initio one-step theory unveil an unusual triple winding of the electron spin along the fourfold-symmetric constant energy contours of the surface states. A two-band k·p model is presented that yields the triple winding as a cubic Rashba effect. The curious in-plane spin-momentum locking is remarkably robust and remains intact across a paramagnetic-antiferromagnetic transition in spite of spin-orbit interaction on Rh atoms being considerably weaker than the out-of-plane exchange field due to the Tb 4f moments.

2.
J Phys Condens Matter ; 31(20): 204001, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30776790

RESUMO

We present an ab initio study of interfaces formed by placing a single trilayer of BiTeI on the Au(1 1 1) surface. We consider two possible interfaces with the parallel and antiparallel orientation of the trilayer dipole moment with respect to the surface normal, i.e. Te-Bi-I/Au(1 1 1) and I-Bi-Te/Au(1 1 1). We show that the resulting interface state that originates from the modified spin-orbit split surface state of the clean Au(1 1 1) surface resides at high energy above the Fermi level and acquires a large spin-splitting and reversal helicity as compared with the original surface state. The former lowest conduction state of the trilayer, which is one of the hitherto known giant Rashba spin-split states of few-atomic-layer structures, becomes partly occupied. In the I-Bi-Te/Au(1 1 1) interface, this state represents a Rashba system with strong spin-orbit interaction, where the outer branch of the spin-split state is mostly populated.

3.
Sci Rep ; 7: 43666, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252656

RESUMO

The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a break- through in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show that quantum spin Hall insulators can be realized in ultra-thin films constructed from a trivial band insulator with strong spin-orbit coupling. The thinnest film with an inverted gap large enough for practical applications is a centrosymmetric sextuple layer built out of two inversely stacked non-centrosymmetric BiTeI trilayers. This nontrivial sextuple layer turns out to be the structure element of an artificially designed strong three-dimensional topological insulator Bi2Te2I2. We reveal general principles of how a topological insulator can be composed from the structure elements of the BiTeX family (X = I, Br, Cl), which opens new perspectives towards engineering of topological phases.

4.
Phys Rev Lett ; 115(21): 216802, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636863

RESUMO

We have investigated plasmonic excitations at the surface of Bi_{2}Se_{3}(0001) via high-resolution electron energy loss spectroscopy. For low parallel momentum transfer q_{∥}, the loss spectrum shows a distinctive feature peaked at 104 meV. This mode varies weakly with q_{∥}. The behavior of its intensity as a function of primary energy and scattering angle indicates that it is a surface plasmon. At larger momenta (q_{∥}~0.04 Å^{-1}), an additional peak, attributed to the Dirac plasmon, becomes clearly defined in the loss spectrum. Momentum-resolved loss spectra provide evidence of the mutual interaction between the surface plasmon and the Dirac plasmon of Bi_{2}Se_{3}. The proposed theoretical model accounting for the coexistence of three-dimensional doping electrons and two-dimensional Dirac fermions accurately represents the experimental observations. The results reveal novel routes for engineering plasmonic devices based on topological insulators.

5.
Sci Rep ; 4: 6900, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25365945

RESUMO

Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

6.
Phys Rev Lett ; 108(24): 246802, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004307

RESUMO

Spintronics is aimed at actively controlling and manipulating the spin degrees of freedom in semiconductor devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system immersed in an inversion-asymmetric environment. The spin-orbit-induced spin splitting of the two-dimensional electron state provides a basis for many theoretically proposed spintronic devices. However, the lack of semiconductors with large Rashba effect hinders realization of these devices in actual practice. Here we report on a giant Rashba-type spin splitting in two-dimensional electron systems that reside at tellurium-terminated surfaces of bismuth tellurohalides. Among these semiconductors, BiTeCl stands out for its isotropic metallic surface-state band with the Γ-point energy lying deep inside the bulk band gap. The giant spin splitting of this band ensures a substantial spin asymmetry of the inelastic mean free path of quasiparticles with different spin orientations.

7.
Prikl Biokhim Mikrobiol ; 32(1): 61-8, 1996.
Artigo em Russo | MEDLINE | ID: mdl-8637841

RESUMO

The principles of complex, ecologically-safe technology for the destruction of battle gas mustard were worked out. This technology was based on the reaction alkaline detoxication of mustard; the major component of reaction mixture obtained after detoxication was thiodiglycol. Thorough thiodiglycol mineralization was achieved by electrochemical treatment. Electrolysis products were biologically utilized in biosorber.


Assuntos
Substâncias para a Guerra Química , Substâncias Perigosas , Gás de Mostarda , Substâncias para a Guerra Química/química , Ecologia , Eletroquímica , Espectroscopia de Ressonância Magnética , Gás de Mostarda/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...