Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134929, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991645

RESUMO

This study focuses on assessing the hydrogeochemical processes influencing the mobility of dissolved metal and metalloid species during mine effluent mixing. Field samples were collected to characterize effluents at an active gold mine located in the Abitibi Greenstone belt in western Québec, Canada. Controlled laboratory mixing experiments were further performed with real effluents. In situ physicochemical parameters, concentrations of major dissolved ions and trace elements were analyzed. Mineralogical analyses were also performed on precipitates from the laboratory mixtures. The data were used for statistical analyses and for modeling the geochemical evolution of effluents using PHREEQC with the wateq4f.dat database (with modifications). The results suggest that the formation of secondary minerals such as schwertmannite, Fe(OH)3, and jarosite could significantly affect the concentrations of trace elements in effluents. The precipitation of secondary minerals immobilized trace elements through coprecipitation and sorption processes. The main limitations of the modeling approach used here include the evaluation of the ion balance for low pH samples with high Fe and Al concentrations and the omission of biological processes. The approach provides insights into the geochemical evolution of mine effluents and could be adapted to several mining sites as a tool for improving water management.

2.
Chemosphere ; 329: 138559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37011816

RESUMO

The mining industry often must mix different kinds of water on the mine site during pre-treatment or post-treatment before the final discharge of the treated water to the environment. Microbubble ozonation has proven to be efficient in the removal of contaminants of concern from mine water, such as metals, metalloids, and nitrogen compounds, which can persist in the environment and entail toxicity issues. This study evaluated the efficiency of ozone microbubbles combined with lime precipitation on contaminant removal and its impact on toxicity for Daphnia magna with five different mine effluent mixes from an active mine site located in Abitibi-Témiscamingue, QC, Canada. For the non-acidic mixes, two scenarios were tested: first, pre-treatment of metals using lime precipitation and a flocculant was conducted prior to ozonation; and second, ozonation was conducted prior to metals post-treatment using the same precipitation and flocculation technique. Results showed that the NH3-N removal efficiency ranged from 90% for the lower initial concentrations (1.1 mg/L) to more than 99% for the higher initial concentrations (58.4 mg/L). Moreover, ozonation without metals pre-treatment improved NH3-N treatment efficiency in terms of kinetics but entailed abnormal toxicity issues. Results of bioassays conducted on water with metals pre-treatment did not show any toxicity events but showed abnormal toxicity patterns on the mixes treated without metals pre-treatment (diluted effluents were toxic, while undiluted were not). At 50% dilution, the water was toxic, probably due to the potential presence of metal oxide nanoparticles. The confirmation of the source of toxicity requires further investigation.


Assuntos
Ozônio , Poluentes Químicos da Água , Animais , Daphnia , Microbolhas , Metais/toxicidade , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 835: 155323, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443206

RESUMO

Treatment of organic contaminants using the electro-Fenton (EF) process is efficient but generates toxic by-products. The aim of the present study was to assess the residual toxicity associated to the treatment of real mine effluents using EF and to perform a preliminary techno-economic analysis to compare the costs of different techniques. Two mine effluents from northern Quebec with different concentrations of thiosalts (MElow and MEhigh) were tested for acute toxicity to Daphnia magna, before and after EF treatment. The higher toxicity of untreated MElow compared to MEhigh, despite its lower thiosalts content (58 vs 199 mg/L), suggests the presence of an unidentified toxic species, which was removed during EF treatment, or that higher thiosalts concentrations mitigate the toxicity of other toxicants. EF treatment of MEhigh, initially non-acutely toxic (50% mortality), resulted in the elimination of D. magna mortality. A preliminary techno-economic analysis conducted for northern Quebec vs the rest of Canada and the USA showed that energy consumption was the main contributor (52-95%) to the total operating costs. Electricity-related costs nearly doubled (55%) for northern Quebec relative to the rest of Canada. These findings provide new insights for the potential application of the EF for the treatment of thiosalts in mine water, for operations in central jurisdictions and in remote northern areas.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Canadá , Quebeque , Água/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 807(Pt 3): 151002, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656571

RESUMO

Passive abiotic treatment of acid mine drainage (AMD) was investigated using phosphate mining residuals (raw low-grade phosphate ore, phosphatic limestone wastes, and phosphate mine tailings) from the Djebel Onk mine, Algeria. Laboratory batch tests were performed using the main expected lithologies of phosphate materials in contact with synthetic AMD, which had a low pH (3.08) and contained high concentrations of Fe (600 mg/L), Mn (40 mg/L), Mg (10 mg/L), Zn (20 mg/L), Cu (25 mg/L), As (50 mg/L), and sulfate (3700 mg/L). Phosphate materials were used as an oxic limestone drain to evaluate the increase in the pH of the AMD and metal removal by sorption and precipitation mechanisms. The results showed that all phosphatic lithologies were efficient in the passive treatment of AMD. The pH rapidly increased from 3.08 to 8.47 during water-rock interactions. The neutralization potential comparisons also showed that the phosphatic limestone wastes neutralized more acid than other lithologies. In addition, metals were efficiently removed (95.5% to 99.9%) by all materials. The results of batch sorption tests showed that the concentrations of metals in residual leachates did not exceed the Algerian criteria for industrial liquid effluents. Overall, these findings indicate that passive systems using phosphatic materials from the Djebel Onk mine can be effective for AMD treatment. The use of these mine wastes for passive treatment of AMD would allow the development of integrated management strategies for these residual materials in the context of sustainable development of phosphate mining.


Assuntos
Fosfatos , Argélia
5.
Chemosphere ; 291(Pt 3): 133051, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34826441

RESUMO

This study evaluated the performance of a passive multi-unit field-pilot operating for 16 months to treat acid mine drainage (AMD) from a coal mine in Colombia Andean Paramo. The multi-unit field-pilot involved a combination of a pre-treatment unit (550 L) filled with dispersed alkaline substrate (DAS), and six passive biochemical reactors (PBRs; 220 L) under two configurations: open (PBRs-A) and closed (PBRs-B) to the atmosphere. The AMD quality was 1200 ± 91 mg L-1 Fe, 38.0 ± 1.3 mg L-1 Mn, 8.5 ± 1.6 mg L-1 Zn, and 3200 ± 183.8 mg L-1 SO42-, at pH 2.8. The input and output effluents were monitored to establish AMD remediation. Physicochemical stability of the post-treatment solids, including metals (Fe2+, Zn2+, and Mn2+) and sulfates for environmental contamination from reactive mixture post-treatment, was also assessed. The passive multi-unit field-pilot achieved a total removal of 74% SO42-, 63% Fe2+, and 48% Mn2+ with the line of PBRs-A, and 91% SO42-, 80% Fe2+, and 66% Mn2+ with the line of PBRs-B, as well as 99% removal for Zn2+ without significant differences (p < 0.05) between the two lines. The study of the physicochemical stability of the post-treatment solids showed they can produce acidic leachates that could release large quantities of Fe and Mn, if they are disposed in oxidizing conditions; contact with water or any other leaching solutions must be avoided. Therefore, these post-treatment solids cannot be disposed of in a municipal landfill. The differences in configuration between PBRs, open or closed to the atmosphere, induced changes in the performance of the passive multi-unit field-pilot during AMD remediation.


Assuntos
Resíduos Sólidos , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Metais , Mineração , Poluentes Químicos da Água/análise
6.
Chemosphere ; 259: 127424, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32599383

RESUMO

Efficiency of Mn passive treatment from mine drainage (MD) is limited, in the presence of Fe, because of the wide stability field of dissolved Mn(II) species. Physicochemical and mineralogical characterization, as well as static leaching tests at pH 7 (CTEU-9) of four samples were performed to assess Mn immobilization processes from MD and post-treatment stability of residues. Samples consisted of half-calcined dolomite, from three column reactors that treated Mn in MD. The first residue originated from real acid mine drainage treatment (R-AMD; pH 2.4; 623 mg/L Fe; 22 mg/L Mn), the second from real contaminated neutral drainage (R-CND; pH 6.7; 0.6 mg/L Mn) and the third from synthetic CND (S-CND; pH 6.8; 47 mg/L Mn). A sample of calcite (CAL) was also collected in a field oxic limestone drain that treats AMD (pH 4.1; 10.2 mg/L Fe; 12.4 mg/L Mn) on a closed mine site. Mineralogical analyses showed Mn immobilization in the form of MnOx. In R-AMD residues, Fe and Al concentrations almost doubled relative to half calcined dolomite before MD treatment, while Mn removal was inefficient. In S-CND residues, high concentrations of Mn were immobilized (>6.6 g/kg). The mineralogy of R-AMD residues showed that Fe precipitates coated the dolomite, in the form of Fe-(oxy)hydroxysulfates. Half-calcined dolomite is effective for Mn removal in S-CND, but Fe inhibits Mn treatment in AMD. Metal(loid)s in eluates were below the threshold limits, but the pH of R-CND (11.1) and S-CND (10.5) residues no longer met the discharge criteria (pH 6.0 to 9.5).


Assuntos
Manganês/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carbonato de Cálcio , Concentração de Íons de Hidrogênio , Magnésio , Manganês/análise , Mineração , Poluentes Químicos da Água/análise
7.
Chemosphere ; 243: 125303, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760288

RESUMO

Passive biochemical reactors (PBRs) represent a promising option for the treatment of mine drainage. In this study, the influence of temperature (22 and 5 °C), salinity (0 and 20 g/L) and hydraulic retention time (HRT) on the efficiency of PBRs for the treatment of acidic and neutral mine drainage (AMD and NMD) was evaluated. To do so, eight 11 L PBRs were set-up and operated with vertically upward flow. Synthetic AMD and NMD, with two salinities (0 and 20 g/L), were tested at ambient temperature (22 ±â€¯0.5 °C) during the first 3 months, then at low temperature (5 ±â€¯1 °C), for 5 additional months. The HRT tested was 0.5 and 1 day, for NMD, and 2.5 and 5 days, for AMD. Results showed a consistent efficiency, above 65%, with higher HRTs (1 vs. 0.5 day for NMD and 5 vs. 2.5 for AMD). At room temperature, metals and sulfate removal was better for non-saline synthetic effluents (>99% vs 95% for Cu, 99% vs >74% for Ni, 90% vs 75% for Fe, and <99% vs <96% for SO42-), after 3 months. At 5 °C, removal efficiency decreased especially for Ni, from 99% to 74%, for both mine drainage qualities. However, sulfate removal was found to be better in saline AMD (<40% vs <10%). The simultaneous effect of low temperature and high salinity further decreased PBR performance. Although higher HRTs entailed better removal efficiency, hydraulic problems such as decreases in permeability of the reactive mixture may still lead to inhibition of long-term PBR efficiency.


Assuntos
Reatores Biológicos/normas , Salinidade , Temperatura , Poluentes Químicos da Água/isolamento & purificação , Temperatura Baixa , Concentração de Íons de Hidrogênio , Metais/isolamento & purificação , Mineração , Sulfatos/isolamento & purificação , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 708: 134739, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784179

RESUMO

Mine effluents must meet discharge criteria for both physicochemical parameters and toxicity. While chemical precipitation is efficient for the treatment of metallic elements in mine effluents, the removal of sulfates, as a source of salinity and potential toxicity, is limited by gypsum solubility. This study evaluated the efficiency of electrocoagulation (EC), an emerging process to treat mine water, in removing sulfates and acute toxicity in two gold mine effluents (E1 and E2), before and after treatment (Fe-electrodes, 30 min at 20 mA/cm2, and pH near neutrality). Standard toxicity tests were conducted on two daphnia species, Daphnia magna (standard test species) and Daphnia pulex (more common in cold climate). Four uncontaminated surface waters (S#1 to S#4), which originated from different watershed lithologies, were also used as dilution media with E1 to assess water quality effect on toxicity response. Statistical analyses using the Student's t-test showed no significant difference in immobility or mortality caused by surface waters on either D. magna or D. pulex species (p > 0.05). However, higher toxicity was observed with both daphnia when reconstituted hard water was used for testing of the treated effluent E2. The present study highlights the toxicity effect added by EC despite a sulfates-related salinity decrease of >7.5%. Further research should identify and confirm the potential sources of observed toxicity.


Assuntos
Daphnia , Animais , Eletrocoagulação , Ouro , Testes de Toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água
9.
Bioresour Technol ; 247: 624-632, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988048

RESUMO

The effect of hydraulic retention time (HRT) on the microbial community during acid mine drainage (AMD) treatment was investigated. Physicochemical and molecular (illumina and qPCR) analyses were performed on reactive mixtures collected from seven bioreactors in three-operation period (8, 17 and 36weeks). Long HRT (4day) favored the relative abundance of SRB, causing the increase of residual sulfides and short HRT (1day) affected the anaerobic conditions of the bioreactors and favored the presence the acidophilic chemolithotrophic microorganisms. Besides qPCR indicated that genes related to cellulose degradation were present in low copy numbers and were affected by the HRT. Finally, environmental factors (pH, organic source, metal sulfides, and sulfate concentrations) had significant impact on relative abundance of the phylogenetic lineages, rather than the types of lineages present in the reactive mixture. The findings of this study indicate that HRT affects the stability of passive bioreactors and their microbial communities.


Assuntos
Reatores Biológicos , Ácidos , Mineração , Filogenia , Sulfatos
10.
Water Sci Technol ; 76(7-8): 1833-1843, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991798

RESUMO

Passive biochemical reactors (PBRs) are a viable alternative to neutralization plants for the treatment of acid mine drainage (AMD) because they require lower investment costs and use residual materials. However, high iron (Fe) concentrations (≥0.5 g/L) in AMD are challenging for their long-term efficiency. Sorption and precipitation are the main Fe removal mechanisms, but the relative importance of each is mostly unknown. In this study, locally available natural materials (organic and inorganic) were characterized and tested for their performance in Fe removal from highly contaminated AMD (pH 3.5, 4 g/L of Fe, and 9 g/L of sulfate). Iron retention capacity of the materials was then evaluated and the efficiency of eight mixtures of materials was compared through 40-day laboratory batch tests. All batch-type PBRs increased the pH up to 6.5 and decreased dissolved metals concentrations, including Fe, up to 99%. Results showed that organic residual materials (manures, municipal wastewater sludge, and compost) were the best substrates for Fe removal.These findings allowed for the selection of three reactive mixtures with distinct characteristics (mixture #1 - 30% organic wastes; mixture #4 - 50% calcite; and mixture #7 - 50% sand) to be further evaluated in column type PBRs.


Assuntos
Ferro/química , Mineração , Águas Residuárias/química , Animais , Concentração de Íons de Hidrogênio , Resíduos Industriais , Esterco/análise , Sulfatos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
11.
Chemosphere ; 153: 244-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27016821

RESUMO

Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Drenagem Sanitária/métodos , Mineração/métodos , Gerenciamento de Resíduos/métodos , Ácidos/química , Biomassa , Concentração de Íons de Hidrogênio , Metais/química , Oxirredução , Oxigênio/química , Sulfatos/química , Sulfetos/química
12.
J Hazard Mater ; 241-242: 411-7, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084427

RESUMO

Treatment of acid mine drainage (AMD) dominated with iron (Fe), the most common metal, is a long-term expensive commitment, the goal of which is to increase the pH and remove Fe. In the present study, a proton exchange membrane microbial fuel cell (MFC) showed promise for the efficient treatment of an AMD dominated with ferric iron (pH 2.4±0.1; 500 mg L(-1) Fe(3+)). Briefly, Fe(3+) was reduced to Fe(2+) at the cathode of the MFC, followed by Fe(2+) re-oxidation and precipitation as oxy(hydroxi)des. Oxygen reduction and cation transfer to the cathode of the MFC further caused a rise in pH. A linear relationship was observed between the charge transferred in the MFC and the performance of the system up to 880 C. Optimal conditions were found at a charge of 662 C, achieved within 7 d at an acetate concentration of 1.6 g L(-1) in a membrane MFC. This caused the pH to rise to 7.9 and resulted in a Fe removal of 99%. Treated effluent met the pH discharge limits of 6.5-9. The maximum power generation achieved under these conditions averaged 8.6±2.3 W m(-3), which could help reduce the costs of full-scale bioelectrochemical treatment of AMD dominated with Fe.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/métodos , Ferro/análise , Mineração , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Ácidos , Drenagem Sanitária/métodos , Compostos Férricos/análise , Compostos Férricos/química , Compostos Ferrosos/análise , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Resíduos Industriais/prevenção & controle , Ferro/química , Membranas Artificiais , Oxirredução , Poluentes Químicos da Água/química
13.
J Hazard Mater ; 157(2-3): 358-66, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281152

RESUMO

Passive bioreactors involving sulphate-reducing bacteria (SRB) are a practical alternative technology to treat acid mine drainage (AMD). Careful selection of the organic carbon source is important to ensure performance and long-term efficiency of the treatment. However, a rigorous and methodical characterization to predict the biodegradability of organic substrates by SRB still needs to be investigated. In the present study, four natural organic materials were thoroughly characterized to assess their ability to serve as substrates and to find a parameter that links organic carbon sources with their biodegradability. Three reactive mixtures were then comparatively evaluated for their performance to treat a highly contaminated AMD in long-term (152 days) batch experiments. All three mixtures were successful for sulphate reduction and metal (Fe, Ni, Cd, Zn, and Mn) removal (91.8-99.8%). Higher efficiencies were observed in the reactors with 30% (w/w) cellulosic wastes (maple wood chips and sawdust) which decreased sulphate concentrations from 5500 mg/L to <1mg/L, than in reactors with 2-3% cellulosic wastes, where final sulphate concentrations were in the range 2000-2750 mg/L. Organic material characterization indicated that higher C/N ratios, chemical oxygen demand (COD)/SO(4)(2-) ratios and dissolved organic carbon (DOC)/SO(4)(2-) ratios were associated with better sulphate-reducing conditions and metal removal. This work suggests that C/N and DOC/SO(4)(2-) ratios considered together are key parameters to assess the biodegradability of natural organic wastes under sulphate-reducing conditions.


Assuntos
Ácidos/química , Reatores Biológicos , Mineração , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Metais/química , Metais/isolamento & purificação , Sulfatos/química , Sulfatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
14.
Chemosphere ; 64(6): 944-54, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16487566

RESUMO

Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.


Assuntos
Bactérias/metabolismo , Mineração , Compostos Orgânicos/metabolismo , Sulfatos/metabolismo , Ácidos , Biodegradação Ambiental , Compostos de Amônio Quaternário/metabolismo , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...