Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(22): 7524-7537, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183860

RESUMO

Without the use of a photosensitizer, [Mn(bpy)(CO)3(CN)] (MnCN) can photochemically form [Mn(bpy)(CO)3]-, the active species for CO2 reduction. While cases of the axial X-ligand dissociating upon irradiation of fac-[M(N-N)(CO)3X] complexes (M = Mn or Re; N-N = bipyridine (bpy) ligand; X = halogen or pseudohalogen) are well documented, the axial cyanide ligand is retained when either [Mn(bpy)(CO)3(CN)] or [Mn(mesbpy)(CO)3(CN)], MnCN(mesbpy), are irradiated anaerobically. Infrared and UV-vis spectroscopies indicate the formation of [Mn(bpy)(CO)2(MeCN)(CN)] (s-MnCN) as the primary product during the irradiation of MnCN. An in-depth analysis of the photochemical mechanism for the formation of [Mn(bpy)(CO)3]- from MnCN is presented. MnCN(mesbpy) is too sterically hindered to undergo the same photochemical mechanism as MnCN. However, MnCN(mesbpy) is found to be electrocatalytically active for CO2 reduction to CO. Thus providing an interesting distinction between photochemical and electrochemical charge transfer.

2.
Dalton Trans ; 51(45): 17203-17215, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314561

RESUMO

The complex, [{[Mn(bpy)(CO)3]2}(µ-CN)]+ (Mn2CN+), has previously been shown to photochemically reduce CO2 to CO. The detailed mechanism behind its reactivity was not elucidated. Herein, the photoevolution of this reaction is studied in acetonitrile (MeCN) using IR and UV-vis spectroscopy. Samples were excited into the MnI → π* bpy metal-to-ligand charge transfer (MLCT) absorption band triggering CO loss, and rapid MeCN solvent ligation at the open coordination site. It is concluded that this process occurs selectively at the Mn axial ligation site that is trans to the C-end of the bridging cyanide. Upon further photolysis, the metal-metal bonded dimeric species, [(CO)3(bpy)Mn-Mn(bpy)(CO)3] (Mn-Mn) is observed to form under anaerobic conditions. The presence of this dimeric species coincides with the observation of CO production. When oxygen is present, CO2 photoreduction does not occur, which is attributed to the inability of Mn2CN+ to convert to the metal-metal bonded dimer. Photolysis experiments, where the Mn-Mn dimer is formed photochemically under argon first and then exposed to CO2, reveal that it is the radical species, [Mn(bpy)(CO)3˙] (Mn˙), that interacts with the CO2. Since the presence of Mn-Mn and light is required for CO production, [Mn(bpy)(CO)3˙] is proposed to be a photochemical reagent for the transformation of CO2 to CO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...