Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1176199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790608

RESUMO

The diabetic kidney disease (DKD) is the major cause of the chronic kidney disease (CKD). Enhanced plasma vasopressin (VP) levels have been associated with the pathophysiology of DKD and CKD. Stimulation of VP release in DKD is caused by glucose-dependent reset of the osmostat leading to secondary pathophysiologic effects mediated by distinct VP receptor types. VP is a stress hormone exhibiting the antidiuretic action in the kidney along with broad adaptive effects in other organs. Excessive activation of the vasopressin type 2 (V2) receptor in the kidney leads to glomerular hyperfiltration and nephron loss, whereas stimulation of vasopressin V1a or V1b receptors in the liver, pancreas, and adrenal glands promotes catabolic metabolism for energy mobilization, enhancing glucose production and aggravating DKD. Increasing availability of selective VP receptor antagonists opens new therapeutic windows separating the renal and extra-renal VP effects for the concrete applications. Improved understanding of these paradigms is mandatory for further drug design and translational implementation. The present concise review focuses on metabolic effects of VP affecting DKD pathophysiology.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Vasopressinas/metabolismo , Receptores de Vasopressinas/metabolismo , Glucose
2.
Pharmacol Res Perspect ; 11(5): e01125, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740581

RESUMO

AIMS: The pharmacodynamic (PD) similarity between GP40141, a proposed romiplostim biosimilar, and reference romiplostim was evaluated. Pharmacokinetics and safety were also assessed. METHODS: In this phase 1, randomized, double-blind, single-dose, crossover comparative study with an adaptive design, 56 healthy male volunteers were randomized 1:1 to receive a 3 ug × kg-1 subcutaneous dose of GP40141 and reference romiplostim. The PD similarity between GP40141 and the reference romiplostim was determined using the standard equivalence criteria (80%-125%) for the area under the platelet count-time curve from time 0 to the time of the last sampling for PD (AUCplt ) and the maximum observed platelet count (Pmax ). RESULTS: GP40141 and the reference romiplostim exhibited similar PD profiles. 90% CI for the geometric mean ratios for the primary PD parameters (AUCplt, Pmax ) for GP40141 (T) and the reference romiplostim (R) were fully contained within the predefined equivalence limits of 80%-125%: 98.13%-102.42% for AUCplt and 97.56%-105.80% for Pmax . The pharmacokinetic profiles of GP40141 and the reference romiplostim were well described. No adverse events were observed during the clinical trial after the administration of GP40141 and the reference romiplostim. CONCLUSION: This study demonstrates the PD similarity of GP40141 to the reference romiplostim. Both treatments had comparable safety profiles (NCT05652595).


Assuntos
Medicamentos Biossimilares , Humanos , Masculino , Medicamentos Biossimilares/efeitos adversos , Método Duplo-Cego , Proteínas Recombinantes de Fusão/efeitos adversos , Voluntários Saudáveis
3.
Cells ; 12(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37443796

RESUMO

Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.


Assuntos
Adenoviridae , Osteogênese , Osteogênese/genética , Adenoviridae/genética , Regeneração Óssea/genética , Terapia Genética , Fibrina
4.
Biochemistry (Mosc) ; 88(12): 2137-2145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462456

RESUMO

The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel's response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeos Opioides , Ratos , Camundongos , Animais , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Proteólise , Peptídeos Opioides/metabolismo , Dor , Analgésicos/farmacologia , Concentração de Íons de Hidrogênio
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499056

RESUMO

Gene therapy is one of the most promising approaches in regenerative medicine. Gene-activated matrices provide stable gene expression and the production of osteogenic proteins in situ to stimulate osteogenesis and bone repair. In this study, we developed new gene-activated matrices based on polylactide granules (PLA) impregnated with BMP2 polyplexes and included in chitosan hydrogel or PRP-based fibrin hydrogel. The matrices showed high biocompatibility both in vitro with mesenchymal stem cells and in vivo when implanted intramuscularly in rats. The use of porous PLA granules allowed the inclusion of a high concentration of polyplexes, and the introduction of the granules into hydrogel provided the gradual release of the plasmid constructs. All gene-activated matrices showed transfecting ability and ensured long-term gene expression and the production of target proteins in vitro. At the same time, the achieved concentration of BMP-2 was sufficient to induce osteogenic differentiation of MSCs. When implanted into critical-size calvarial defects in rats, all matrices with BMP2 polyplexes led to new bone formation. The most significant effect on osteoinduction was observed for the PLA/PRP matrices. Thus, the developed gene-activated matrices were shown to be safe and effective osteoplastic materials. PLA granules and PRP-based fibrin hydrogel containing BMP2 polyplexes were shown to be the most promising for future applications in bone regeneration.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Ratos , Animais , Osteogênese/genética , Quitosana/metabolismo , Hidrogéis/farmacologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Fibrina/metabolismo
6.
Biomed Pharmacother ; 156: 113986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411653

RESUMO

Mutations in the gene encoding the RNA/DNA-binding protein Fused in Sarcoma (FUS) have been detected in familial amyotrophic lateral sclerosis (ALS) patients. FUS has been found to be a critical component of the oxidative damage repair complex that might explain its role in neurodegeneration. Here, we examined what impact antioxidant treatment with thiamine (vitamine B1), or its more bioavailable derivative O,S-dibenzoylthiamine (DBT), would have on the hallmarks of pathology in the FUS[1-359]-transgenic mouse model of ALS. From 8-weeks old, in the pre-symptomatic phase of disease, animals received either thiamine, DBT (200 mg/kg/day), or vehicle for 6 weeks. We examined physiological, behavioral, molecular and histological outcomes, as well as the serum metabolome using nuclear magnetic resonance (NMR). The DBT-treated mice displayed improvements in physiological outcomes, motor function and muscle atrophy compared to vehicle, and the treatment normalized levels of brain glycogen synthase kinase-3ß (GSK-3ß), GSK-3ß mRNA and IL-1ß mRNA in the spinal cord. Analysis of the metabolome revealed an increase in the levels of choline and lactate in the vehicle-treated FUS mutants alone, which is also elevated in the cerebrospinal fluid of ALS patients, and reduced glucose and lipoprotein concentrations in the FUS[1-359]-tg mice, which were not the case in the DBT-treated mutants. The administration of thiamine had little impact on the outcome measures, but it did normalize circulating HDL levels. Thus, our study shows that DBT therapy in FUS mutants is more effective than thiamine and highlights how metabolomics may be used to evaluate therapy in this model.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína FUS de Ligação a RNA/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Atrofia Muscular , Camundongos Transgênicos , Tiamina/farmacologia , Tiamina/uso terapêutico , Metaboloma , RNA Mensageiro/metabolismo
7.
Vaccines (Basel) ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36016181

RESUMO

Public health threat coming from a rapidly developing COVID-19 pandemic calls for developing safe and effective vaccines with innovative designs. This paper presents preclinical trial results of "Betuvax-CoV-2", a vaccine developed as a subunit vaccine containing a recombinant RBD-Fc fusion protein and betulin-based spherical virus-like nanoparticles as an adjuvant ("Betuspheres"). The study aimed to demonstrate vaccine safety in mice, rats, and Chinchilla rabbits through acute, subchronic, and reproductive toxicity studies. Along with safety, the vaccine demonstrated protective efficacy through SARS-CoV-2-neutralizing antibody production in mice, rats, hamsters, rabbits, and primates (rhesus macaque), and lung damage and infection protection in hamsters and rhesus macaque model. Eventually, "Betuvax-CoV-2" was proved to confer superior efficacy and protection against the SARS-CoV-2 in preclinical studies. Based on the above results, the vaccine was enabled to enter clinical trials that are currently underway.

8.
Toxins (Basel) ; 14(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878228

RESUMO

Jervine, protoveratrine A (proA), and protoveratrine B (proB) are Veratrum alkaloids that are presented in some remedies obtained from Veratrum lobelianum, such as Veratrum aqua. This paper reports on a single-center pilot cardiotoxic mechanism study of jervine, proA, and proB in case series. The molecular aspects were studied via molecular dynamic simulation, molecular docking with cardiac sodium channel NaV1.5, and machine learning-based structure-activity relationship modeling. HPLC-MS/MS method in combination with clinical events were used to analyze Veratrum alkaloid cardiotoxicity in patients. Jervine demonstrates the highest docking score (-10.8 kcal/mol), logP value (4.188), and pKa value (9.64) compared with proA and proB. Also, this compound is characterized by the lowest calculated IC50. In general, all three analyzed alkaloids show the affinity to NaV1.5 that highly likely results in cardiotoxic action. The clinical data of seven cases of intoxication by Veratrum aqua confirms the results of molecular modeling. Patients exhibited nausea, muscle weakness, bradycardia, and arterial hypotension. The association between alkaloid concentrations in blood and urine and severity of patient condition is described. These experiments, while primary, confirmed that jervine, proA, and proB contribute to cardiotoxicity by NaV1.5 inhibition.


Assuntos
Alcaloides , Veratrum , Alcaloides/toxicidade , Cardiotoxicidade , Humanos , Simulação de Acoplamento Molecular , Projetos Piloto , Espectrometria de Massas em Tandem , Alcaloides de Veratrum/farmacologia
9.
J Bone Oncol ; 35: 100440, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855933

RESUMO

Ewing's sarcoma (ES) is an aggressive malignant tumor commonly affecting adolescents. The standard of care includes surgical treatment and systemic therapies, although ES patients often develop drug resistance, leading to disease progression. Tumorigenesis in Ewing's sarcoma has unique characteristics that allow for the development of targeted therapeutics. New data on the role of oncogenic drivers in ES tumorigenesis, particularly in relation to treatment-induced stress, offers new therapeutic opportunities. This review summarizes the latest information on the clinically relevant oncogenes found in Ewing's sarcoma, their biological roles, and candidate targets for improving ES patient outcomes.

10.
Stem Cell Res Ther ; 13(1): 317, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842689

RESUMO

One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.


Assuntos
COVID-19 , Engenharia Tecidual , Animais , Humanos , Lasers , Camundongos , Pandemias , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia
11.
Cells ; 11(6)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326487

RESUMO

The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 ß (GSK-3ß), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.


Assuntos
Serotonina , Triptofano Hidroxilase/metabolismo , Agressão/fisiologia , Animais , Feminino , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Comportamento Predatório , Ratos , Serotonina/metabolismo , Triptofano Hidroxilase/genética
12.
Int J Radiat Biol ; 98(8): 1330-1343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259048

RESUMO

MATERIALS AND METHODS: Experimental animals (n = 135) were divided into 5 groups: I - control (n = 10); II - 2IR (n = 35; 2 Gy); III - 2IR + LP-PRP + IGF-1 (n = 30); IV - 2IR + LP-PRP (n = 30); V - LP-PRP (n = 30). RESULTS: Electron irradiation reduces the number of germ cells in comparison with the control group. After injection of LP-PRP + rhIGF-1 significantly increased the number of germ cells, Sertoli and Leydig cells, the height of germinal epithelium, area and diameter of seminiferous tubules. CONCLUSION: LP-PRP + rhIGF-1 has a normalizing effect on structural and functional disorders of the testis caused by electron irradiation.


Assuntos
Túbulos Seminíferos , Espermatogênese , Animais , Células Germinativas , Masculino , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/efeitos da radiação , Espermatogênese/efeitos da radiação , Testículo
13.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358094

RESUMO

The strong psychoactive effects of synthetic cannabinoids raise the need for the deeper studying of their neurometabolic effects. The pharmacokinetic properties of 5F-APINAC and its influence on metabolomics profiles associated with neurotransmission were investigated in rabbit plasma. Twelve rabbits divided into three groups received 1-mL 5F-APINAC at 0.1, 1 and 2 mg/kg. The intervention groups were compared with the controls. Sampling was performed at nine time points (0-24 h). Ultra-high-performance liquid chromatography-tandem mass spectrometry was used. The pharmacokinetics were dose-dependent (higher curve at a higher dose) with a rapid biotransformation, followed by gradual elimination within 24 h. The tryptophan concentrations abruptly decreased (p < 0.05) in all tested groups, returning to the basal levels after 6 h. 5-hydroxylindole acetic acid increased (p < 0.05) in the controls, but this trend was absent in the treated groups. The aspartic acid concentrations were elevated (p < 0.001) in the treated groups. L-kynurenine was elevated (p < 0.01) in the intervention groups receiving 1 mg/kg to 2 mg/kg. Dose-dependent elevations (p < 0.01) were found for kynurenic acid, xanthurenic acid and quinolinic acid (p < 0.01), whereas the anthranilic acid trends were decreased (p < 0.01). The indole-3-propionic acid and indole-3-carboxaldehyde trends were elevated (p < 0.05), whereas the indole-3-lactic acid trajectories were decreased (p < 0.01) in the intervention groups. 5F-APINAC administration had a rapid biotransformation and gradual elimination. The metabolites related to the kynurenine and serotonergic system/serotonin pathways, aspartic acid innervation system and microbial tryptophan catabolism were altered.

14.
Front Nutr ; 8: 661455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937310

RESUMO

Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of "emotional" ultrasound stress (US), mice were subjected to ultrasound frequencies of 16-20 kHz, mimicking rodent sounds of anxiety/despair and "neutral" frequencies of 25-45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.

15.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008719

RESUMO

Articular cartilage is a highly organized tissue that has a limited ability to heal. Tissue engineering is actively exploited for joint tissue reconstruction in numerous cases of articular cartilage degeneration associated with trauma, arthrosis, rheumatoid arthritis, and osteoarthritis. However, the optimal scaffolds for cartilage repair are not yet identified. Here we have directly compared five various scaffolds, namely collagen-I membrane, collagen-II membrane, decellularized cartilage, a cellulose-based implant, and commercially available Chondro-Gide® (Geistlich Pharma AG, Wolhusen, Switzerland) collagen membrane. The scaffolds were implanted in osteochondral full-thickness defects, formed on adult Wistar rats using a hand-held cutter with a diameter of 2.0 mm and a depth of up to the subchondral bone. The congruence of the articular surface was almost fully restored by decellularized cartilage and collagen type II-based scaffold. The most vivid restoration was observed 4 months after the implantation. The formation of hyaline cartilage was not detected in any of the groups. Despite cellular infiltration into scaffolds being observed in each group except cellulose, neither chondrocytes nor chondro-progenitors were detected. We concluded that for restoration of hyaline cartilage, scaffolds have to be combined either with cellular therapy or morphogens promoting chondrogenic differentiation.


Assuntos
Cartilagem Hialina/patologia , Implantação de Prótese , Alicerces Teciduais/química , Animais , Colágenos Fibrilares/metabolismo , Articulação do Joelho/patologia , Masculino , Osteogênese , Ratos Wistar , Fatores de Transcrição SOX9/metabolismo
16.
Open Access Maced J Med Sci ; 7(6): 908-912, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30976332

RESUMO

AIM: The study was aimed at researching the specific wound healing activity of the drug with a comprehensive therapeutic effect based on derivatives of glucosamine and acrylic polymers to treat the infected wounds of various origins on a model of a planar infected wound. METHODS: The model of septic wounds in rats as per the method of P.I. Tolstykh was used during the study of the specific activity of the drug with a comprehensive therapeutic effect based on derivatives of glucosamine and acrylic polymers for the treatment of infected wounds. The infection was performed with the S. aureus and E. coli strains. The study lasted 18 days, and during this period no full scarring occurred. The wound diameter was chosen as the effectiveness criterion. The planimetric method was used to assess the course of the wound process in experimental animals. RESULTS: The obtained data prove the specific action of the drug with a comprehensive therapeutic action based on derivatives of glucosamine and acrylic polymers to treat the infected wounds of various origins. The study has shown that bacterially infected wounds healed worse than noninfected ones. Both types of wounds - infected and uninfected ones - healed faster when applying the test drug or Levomekol ointment. CONCLUSION: On the model of a planar infected wound, the developed drug with a comprehensive therapeutic action has shown better wound healing effect compared with the Levomekol reference drug.

17.
Open Access Maced J Med Sci ; 7(21): 3509-3513, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32010367

RESUMO

BACKGROUND: Parkinson's disease is one of the most common neurological diseases. Pathogenesis of the disease is associated with destruction and death of neurons that produce the neurotransmitter dopamine. The precursor to dopamine, which crosses the protective blood-brain barrier, is the amino acid 3, 4-dihydroxy-L-phenylalanine - levodopa, L-DOPA. The investigational drug is a pharmaceutical composition, containing L-DOPA as an active substance, which is distributed in a polymer matrix based on a biodegradable copolymer of lactic/glycolic acids. AIM: This work aimed to study the main pharmacokinetic parameters for the drug "L-DOPA - PC, nasal drops" and comparator drugs "L-DOPA in oil", "L-DOPA - PC in purified water", reference product - tablets "Madopar 125". METHODS: To increase the bioavailability of the active substance L-DOPA, a new route of administration was used for the first time - nasal administration. Pharmacokinetics of the innovative drug with the intranasal route of administration was investigated in rabbits. The L-DOPA concentration in blood plasma was determined by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). RESULTS: Bioavailability of the drug - nasal drops were 244.4% compared with the drug "Madopar 125". CONCLUSION: Assay procedure for the determination of L-DOPA in animal blood plasma using liquid chromatography with tandem mass-selective detection (HPLC-MS/MS) was developed and validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...