Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Clin Dermatol ; 24(2): 247-273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36630066

RESUMO

Biologic therapies targeting B-cells are emerging as an effective strategy to treat a variety of immune-mediated diseases. One of the most studied B-cell-targeted therapies is rituximab, an anti-CD20 monoclonal antibody that exemplifies B-cell depletion therapy and has served as the prototype for other anti-CD20 monoclonal antibodies and the development of biosimilars. While there are multiple studies on the use of rituximab in dermatology, a comprehensive review of rituximab therapy in autoimmune skin conditions is lacking. In this literature review, we summarize indications, treatment efficacy, and safety of rituximab among common autoimmune diseases of the skin: pemphigus vulgaris, cutaneous lupus erythematous, dermatomyositis, systemic sclerosis, thyroid dermopathy, autoimmune pemphigoid diseases, and cutaneous vasculitis diseases. Existing data on rituximab support the approach of rituximab, biosimilars, and newer B-cell-targeting therapies in immune-mediated cutaneous diseases. Overall, rituximab, which targets CD20, provides an effective alternative or concomitant option to traditional immunosuppressants in the management of various autoimmune diseases of the skin. Further studies are necessary to expand the understanding and possible utility of B-cell-targeted therapies among autoimmune skin diseases.


Assuntos
Antineoplásicos , Doenças Autoimunes , Medicamentos Biossimilares , Doenças do Sistema Imunitário , Humanos , Rituximab , Medicamentos Biossimilares/uso terapêutico , Anticorpos Monoclonais Murinos/uso terapêutico , Imunossupressores/uso terapêutico , Antineoplásicos/uso terapêutico
3.
Sci Rep ; 12(1): 8671, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606373

RESUMO

In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.


Assuntos
Malária , Melanoma , Plasmodium yoelii , Animais , Detecção Precoce de Câncer , Eritrócitos , Lasers Semicondutores , Malária/diagnóstico , Camundongos , Plasmodium falciparum
4.
Sci Rep ; 11(1): 19732, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611196

RESUMO

Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.


Assuntos
Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Agregados Proteicos/efeitos da radiação , Agregação Patológica de Proteínas/metabolismo , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Doença de Huntington/terapia , Lasers , Terapia com Luz de Baixa Intensidade , Peptídeos/metabolismo , Terapia Fototérmica , Agregação Patológica de Proteínas/terapia , Proteínas Recombinantes de Fusão/metabolismo
6.
Sci Rep ; 10(1): 3362, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099027

RESUMO

Pancreatic cancer is one of the most complex types of cancers to detect, diagnose, and treat. However, the field of nanomedicine has strong potential to address such challenges. When evaluating the diffusion and penetration of theranostic nanoparticles, the extracellular matrix (ECM) is of crucial importance because it acts as a barrier to the tumor microenvironment. In the present study, the penetration of functionalized, fluorescent gold nanorods into large (>500 µm) multicellular 3D tissue spheroids was studied using a multimodal imaging approach. The spheroids were generated by co-culturing pancreatic cancer cells and pancreatic stellate cells in multiple ratios to mimic variable tumor-stromal compositions and to investigate nanoparticle penetration. Fluorescence live imaging, photothermal, and photoacoustic analysis were utilized to examine nanoparticle behavior in the spheroids. Uniquely, the nanorods are intrinsically photoacoustic and photothermal, enabling multi-imaging detection even when fluorescence tracking is not possible or ideal.


Assuntos
Imagem Multimodal , Nanopartículas/química , Neoplasias Pancreáticas/diagnóstico por imagem , Células Estromais/ultraestrutura , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Ouro/química , Humanos , Nanotubos/química , Imagem Óptica , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/ultraestrutura , Esferoides Celulares/ultraestrutura , Microambiente Tumoral/efeitos dos fármacos
7.
Cytometry A ; 97(7): 706-712, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769208

RESUMO

Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using an in vivo flow cytometry platform for real-time, noninvasive, label-free, and quantitative monitoring of the lifespan of green fluorescent protein-expressing Staphylococcus aureus and Pseudomonas aeruginosa in a murine model. We report a relatively fast average rate of clearance for S. aureus (k = 0.37 ± 0.09 min-1 , half-life ~1.9 min) and a slower rate for P. aeruginosa (k = 0.07 ± 0.02 min-1 , half-life ~9.6 min). We also observed what appears to be two stages of clearance for S. aureus, while P. aeruginosa appeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos , Modelos Animais de Doenças , Humanos , Camundongos , Pseudomonas aeruginosa
8.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189720

RESUMO

Most cancer deaths arise from metastases as a result of circulating tumor cells (CTCs) spreading from the primary tumor to vital organs. Despite progress in cancer prognosis, the role of CTCs in early disease diagnosis is unclear because of the low sensitivity of CTC assays. We demonstrate the high sensitivity of the Cytophone technology using an in vivo photoacoustic flow cytometry platform with a high pulse rate laser and focused ultrasound transducers for label-free detection of melanin-bearing CTCs in patients with melanoma. The transcutaneous delivery of laser pulses via intact skin to a blood vessel results in the generation of acoustic waves from CTCs, which are amplified by vapor nanobubbles around intrinsic melanin nanoclusters. The time-resolved detection of acoustic waves using fast signal processing algorithms makes photoacoustic data tolerant to skin pigmentation and motion. No CTC-associated signals within established thresholds were identified in 19 healthy volunteers, but 27 of 28 patients with melanoma displayed signals consistent with single, clustered, and likely rolling CTCs. The detection limit ranged down to 1 CTC/liter of blood, which is ~1000 times better than in preexisting assays. The Cytophone could detect individual CTCs at a concentration of ≥1 CTC/ml in 20 s and could also identify clots and CTC-clot emboli. The in vivo results were verified with six ex vivo methods. These data suggest the potential of in vivo blood testing with the Cytophone for early melanoma screening, assessment of disease recurrence, and monitoring of the physical destruction of CTCs through real-time CTC counting.


Assuntos
Biópsia Líquida/métodos , Melanoma/patologia , Citometria de Fluxo , Humanos , Melanoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia
9.
Nanotheranostics ; 3(2): 145-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31008023

RESUMO

A major challenge in photothermal treatment is generating sufficient heat to eradicate diseased tissue while sparing normal tissue. Au nanomaterials have shown promise as a means to achieve highly localized photothermal treatment. Toward that end, the synthetic peptide anginex was conjugated to Au nanocages. Anginex binds to galectin-1, which is highly expressed in dividing endothelial cells found primarily in the tumor vasculature. The skin surface temperature during a 10 min laser exposure of subcutaneous murine breast tumors did not exceed 43°C and no normal tissue damage was observed, yet a significant anti-tumor effect was observed when laser was applied 24 h post-injection of targeted nanocages. Untargeted particles showed little effect in immunocompetent, tumor-bearing mice under these conditions. Photoacoustic, photothermal, and ICP-MS mapping of harvested tissue showed distribution of particles near the vasculature throughout the tumor. This uptake pattern within the tumor combined with a minimal overall temperature rise were nonetheless sufficient to induce marked photothermal efficacy and evidence of tumor control. Importantly, this evidence suggests that bulk tumor temperature during treatment does not correlate with treatment outcome, which implies that targeted nanomedicine can be highly effective when closely bound/distributed in and around the tumor endothelium and extensive amounts of direct tumor cell binding may not be a prerequisite of effective photothermal approaches.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Experimentais , Fototerapia , Animais , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
10.
Sci Rep ; 9(1): 887, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696936

RESUMO

Nanoparticles from magnetotactic bacteria have been used in conventional imaging, drug delivery, and magnetic manipulations. Here, we show that these natural nanoparticles and their bioinspired hybrids with near-infrared gold nanorods and folic acid can serve as molecular high-contrast photoacoustic probes for single-cell diagnostics and as photothermal agents for single-cell therapy using laser-induced vapor nanobubbles and magnetic field as significant signal and therapy amplifiers. These theranostics agents enable the detection and photomechanical killing of triple negative breast cancer cells that are resistant to conventional chemotherapy, with just one or a few low-energy laser pulses. In studies in vivo, we discovered that circulating tumor cells labeled with the nanohybrids generate transient ultrasharp photoacoustic resonances directly in the bloodstream as the basis for new super-resolution photoacoustic flow cytometry in vivo. These properties make natural and bioinspired magnetic nanoparticles promising biocompatible, multimodal, high-contrast, and clinically relevant cellular probes for many in vitro and in vivo biomedical applications.


Assuntos
Nanopartículas de Magnetita/uso terapêutico , Técnicas Fotoacústicas/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Ouro/uso terapêutico , Humanos , Hipertermia Induzida , Camundongos , Nanopartículas/uso terapêutico , Nanotubos , Neoplasias/patologia , Fototerapia , Nanomedicina Teranóstica
11.
Nanoscale ; 11(3): 932-944, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30608496

RESUMO

The use of graphene for biomedical and other applications involving humans is growing and shows practical promise. However, quantifying the graphitic nanomaterials that interact with cells and assessing any corresponding cellular response is extremely challenging. Here, we report an effective approach to quantify graphene interacting with single cells that utilizes combined multimodal-Raman and photoacoustic spectroscopy. This approach correlates the spectroscopic signature of graphene with the measurement of its mass using a quartz crystal microbalance resonator. Using this technique, we demonstrate single cell noninvasive quantification and multidimensional mapping of graphene with a detection limit of as low as 200 femtograms. Our investigation also revealed previously unseen graphene-induced changes in surface receptor expression in dendritic cells of the immune system. This tool integrates high-sensitivity real-time detection and monitoring of nanoscale materials inside single cells with the measurement of induced simultaneous biological cell responses, providing a powerful method to study the impact of nanomaterials on living systems and as a result, the toxicology of nanoscale materials.


Assuntos
Grafite/química , Nanoestruturas/química , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Técnicas Fotoacústicas , Técnicas de Microbalança de Cristal de Quartzo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Análise Espectral Raman
12.
Cytometry A ; 95(6): 664-671, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30508273

RESUMO

Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real-time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two-color fluorescence flow cytometry (FFC) using breast cancer cells MDA-MB-231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin-V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real-time monitoring of antitumor drug efficiency is discussed. © 2018 International Society for Advancement of Cytometry.


Assuntos
Apoptose , Vasos Sanguíneos/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Citometria de Fluxo/métodos , Células Neoplásicas Circulantes/química , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Vasos Sanguíneos/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/efeitos da radiação , Estaurosporina/toxicidade
13.
J Biophotonics ; 12(4): e201800265, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511464

RESUMO

Progress in understanding the cell biology and diseases depends on advanced imaging and labeling techniques. Here, we address this demand by exploring novel multilayered nanocomposites (MNCs) with plasmonic nanoparticles and absorbing dyes in thin nonabsorbing shells as supercontrast multimodal photoacoustic (PA) and fluorescent agents in the near-infrared range. The proof of concept was performed with gold nanorods (GNRs) and indocyanine green (ICG) dispersed in a matrix of biodegradable polymers. We demonstrated synergetic PA effects in MNCs with the gold-ICG interface that could not be achieved with ICG and GNRs alone. We also observed ultrasharp PA and emission peaks that could be associated with nonlinear PA and spaser effects, respectively. Low-toxicity multimodal MNCs with unique plasmonic, thermal and acoustic properties have the potential to make a breakthrough in PA flow cytometry and near-infrared spasers in vivo by using the synergetic interaction of plasmonic modes with a nearby absorbing medium.


Assuntos
Corantes Fluorescentes/química , Nanocompostos/química , Técnicas Fotoacústicas , Animais , Ouro/química , Verde de Indocianina/química , Camundongos , Nanotubos/química
14.
Biomed Opt Express ; 9(11): 5667-5677, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30460154

RESUMO

Blood clotting is a serious clinical complication of many medical procedures and disorders including surgery, catheterization, transplantation, extracorporeal circuits, infections, and cancer. This complication leads to high patient morbidity and mortality due to clot-induced pulmonary embolism, stroke, and in some cases heart attack. Despite the clear medical significance, little progress has been made in developing the methods for detection of circulating blood clots (CBCs), also called emboli. We recently demonstrated the application of in vivo photoacoustic (PA) flow cytometry (PAFC) with unfocused ultrasound transducers for detection of CBCs in small vessels in a mouse model. In the current study, we extend applicability of PAFC for detection of CBCs in relatively large (1.5-2 mm) and deep (up to 5-6 mm) blood vessels in rat and rabbit models using a high pulse rate 1064 nm laser and focused ultrasound transducer with a central hole for an optic fiber. Employing phantoms and chemical activation of clotting, we demonstrated PA identification of white, red, and mixed CBCs producing negative, positive, and mixed PA contrast in blood background, respectively. We confirmed that PAFC can detect both red and white CBCs induced by microsurgical procedures, such as a needle or catheter insertion, as well as stroke modeled by injection of artificial clots. Our results show great potential for a PAFC diagnostic platform with a wearable PA fiber probe for diagnosis of thrombosis and embolism in vivo that is impossible with existing techniques.

15.
J Biophotonics ; 11(8): e201700126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29232054

RESUMO

The lymphatic system contributes to body homeostasis by clearing fluid, lipids, plasma proteins and immune cells from the interstitial space. Many studies have been performed to understand lymphatic function under normal conditions and during disease. Nevertheless, a further improvement in quantification of lymphatic behavior is needed. Here, we present advanced bright-field microscopy for in vivo imaging of lymph vessels (LVs) and automated quantification of lymphatic function at a temporal resolution of 2 milliseconds. Full frame videos were compressed and recorded continuously at up to 540 frames per second. A new edge detection algorithm was used to monitor vessel diameter changes across multiple cross sections, while individual cells in the LVs were tracked to estimate flow velocity. The system performance initially was verified in vitro using 6- and 10-µm microspheres as cell phantoms on slides and in 90-µm diameter tubes at flow velocities up to 4 cm/second. Using an in vivo rat model, we explored the mechanisms of lymphedema after surgical lymphadenectomy of the mesentery. The system revealed reductions of mesenteric LV contraction and flow rate. Thus, the described imaging system may be applicable to the study of lymphatic behavior during therapeutic and surgical interventions, and potentially during lymphatic system diseases.


Assuntos
Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Microscopia/métodos , Animais , Processamento de Imagem Assistida por Computador , Vasos Linfáticos/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
16.
Int J Hyperthermia ; 34(1): 19-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28540812

RESUMO

PURPOSE: To demonstrate delivery of Au nanocages to cells using the galectin-1 binding peptide anginex (Ax) and to demonstrate the value of this targeting for selective in vitro photothermal cell killing. MATERIALS AND METHODS: Au nanocages were synthesised, coated with polydopamine (PDA), and conjugated with Ax. Tumour and endothelial cell viability was measured with and without laser irradiation. Photoacoustic (PA) mapping and PA flow cytometry were used to confirm cell targeting in vitro and in tissue slices ex vivo. RESULTS: Cell viability was maintained at ≥50% at 100 pM suggesting low toxicity of the nanocage alone. Combining the targeted construct (25 pM) with low power 808 nm laser irradiation for 10-20 min (a duration previously shown to induce rapid and sustained heating of Au nanocages [AuNC] in solution), resulted in over 50% killing of endothelial and tumour cells. In contrast, the untargeted construct combined with laser irradiation resulted in negligible cell killing. We estimate approximately 6 × 104 peptides were conjugated to each nanocage, which also resulted in inhibition of cell migration. Binding of the targeted nanocage reached a plateau after three hours, and cell association was 20-fold higher than non-targeted nanocages both in vitro and ex vivo on tumour tissue slices. A threefold increase in tumour accumulation was observed in preliminary in vivo studies. CONCLUSIONS: These studies demonstrate Ax's potential as an effective targeting agent for Au-based theranostics to tumour and endothelial cells, enabling photothermal killing. This platform further suggests potential for multimodal in vivo therapy via next-generation drug-loaded nanocages.


Assuntos
Galectina 1/metabolismo , Ouro/metabolismo , Nanoestruturas/química , Fototerapia/métodos , Animais , Camundongos , Camundongos Endogâmicos BALB C
17.
Biochem Biophys Res Commun ; 492(3): 507-512, 2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-28822765

RESUMO

Noninvasive biological readouts of tumor metastatic risk and therapeutic efficacy are needed as healthcare costs rise. CTCs are the source of metastasis in distant organs that are responsible for the majority of cancer-related deaths. Here we demonstrate the acute and long-term effect of vascular disrupting therapies (high-dose radiotherapy and tumor necrosis factor-alpha (TNF)) on CTCs released from the primary tumor with a non-invasive real-time in vivo flow cytometry system. Using our innovative flow cytometry platform, we show here that radiation and nanodrug treatment can lead to short term release of CTC from the primary tumor. There was no increase in metastasis frequency or extent between control and TNF-treated mice; however, a significant reduction in lung metastasis was noted in the radiotherapy alone group. Mice treated with both TNF and radiotherapy had a slightly elevated metastatic profile between that of radiation alone and control (untreated) tumors. Possible mechanisms based on therapy specific vessel disruption and cell death are discussed. Overall, CTCs correlated with tumor progression and suggest CTC enumeration described herein may be useful in clinical management of solid tumor malignancies.


Assuntos
Citometria de Fluxo , Ouro/farmacologia , Nanopartículas/química , Neoplasias/patologia , Neoplasias/terapia , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos da radiação , Polietilenoglicóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Células Neoplásicas Circulantes/patologia , Fatores de Tempo
18.
J Appl Toxicol ; 37(12): 1370-1378, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730725

RESUMO

Multifunctional nanoparticles have high potential as targeting delivery vehicles for cancer chemotherapy. In this study, silver-decorated gold nanorods (AuNR\Ag) have been successfully used to deliver specific, targeted chemotherapy against breast cancer (MCF7) and prostate carcinoma (PC3) cell lines. Doxorubicin, a commonly used chemotherapy, and anti-Epithelial cell adhesion molecule (anti-EpCAM) antibodies were covalently bonded to thiolated polyethylene glycol-coated AuNR\Ag, and the resultant system was used to deliver the drugs to cancer cells in vitro. Furthermore, these nanoparticles have a unique spectral signature by surface enhanced Raman spectroscopy (SERS), which enables reliable detection and monitoring of the distribution of these chemotherapy constructs inside cells. The development of interest in a plasmonic nano drugs system with unique spectroscopic signatures could result in a clinical approach to the precise targeting and visualization of cells and solid tumors while delivering molecules for the enhanced treatment of cancerous tumors.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Ouro/química , Nanotubos/química , Prata/química , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Doxorrubicina/farmacologia , Molécula de Adesão da Célula Epitelial/imunologia , Humanos , Terapia de Alvo Molecular , Análise Espectral Raman
19.
Sci Rep ; 7(1): 5513, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710434

RESUMO

Dendritic cells (DCs) can acquire, process, and present antigens to T-cells to induce an immune response. For this reason, targeting cancer antigens to DCs in order to cause an immune response against cancer is an emerging area of nanomedicine that has the potential to redefine the way certain cancers are treated. The use of plasmonically active silver-coated gold nanorods (henceforth referred to as plasmonic nano vectors (PNVs)) as potential carriers for DC tumor vaccines has not been presented before. Effective carriers must be able to be phagocytized by DCs, present low toxicity, and induce the maturation of DCs-an early indication of an immune response. When we treated DCs with the PNVs, we found that the cell viability of DCs was unaffected, up to 200 µg/ml. Additionally, the PNVs associated with the DCs as they were phagocytized and they were found to reside within intracellular compartments such as endosomes. More importantly, the PNVs were able to induce expression of surface markers indicative of DC activation and maturation, i.e. CD40, CD86, and MHC class II. These results provide the first evidence that PNVs are promising carriers for DC-based vaccines and warrant further investigating for clinical use.


Assuntos
Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Células Dendríticas/imunologia , Ouro/farmacologia , Antígenos de Histocompatibilidade Classe II/farmacologia , Prata/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Nanotubos/química , Fagocitose
20.
Nat Commun ; 8: 15528, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593987

RESUMO

Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.


Assuntos
Imagem Multimodal/métodos , Pontos Quânticos , Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular , Meios de Contraste/química , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/química , Ouro/química , Humanos , Lasers , Luz , Teste de Materiais , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanosferas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...