Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276847

RESUMO

Extensive research has been conducted on Ti-Fe-Sn ultrafine eutectic composites due to their high yield strength, compared to conventional microcrystalline alloys. The unique microstructure of ultrafine eutectic composites, which consists of the ultrafine-grained lamella matrix with the formation of primary dendrites, leads to high strength and desirable plasticity. A lamellar structure is known for its high strength with limited plasticity, owing to its interface-strengthening effect. Thus, extensive efforts have been conducted to induce the lamellar structure and control the volume fraction of primary dendrites to enhance plasticity by tailoring the compositions. In this study, however, it was found that not only the volume fraction of primary dendrites but also the morphology of dendrites constitute key factors in inducing excellent ductility. We selected three compositions of Ti-Fe-Sn ultrafine eutectic composites, considering the distinct volume fractions and morphologies of ß-Ti dendrites based on the Ti-Fe-Sn ternary phase diagram. As these compositions approach quasi-peritectic reaction points, the α″-Ti martensitic phase forms within the primary ß-Ti dendrites due to under-cooling effects. This pre-formation of the α″-Ti martensitic phase effectively governs the growth direction of ß-Ti dendrites, resulting in the development of round-shaped primary dendrites during the quenching process. These microstructural evolutions of ß-Ti dendrites, in turn, lead to an improvement in ductility without a significant compromise in strength. Hence, we propose that fine-tuning the composition to control the primary dendrite morphology can be a highly effective alloy design strategy, enabling the attainment of greater macroscopic plasticity without the typical ductility and strength trade-off.

2.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560181

RESUMO

Real-time monitoring of the liquid core position during the continuous casting of steel has been demonstrated using low-cost distributed optical-fiber-based strain sensors. These sensors were installed on the containment roll support structures in the segments of a production continuous caster to detect the position of the solid-liquid interface and monitor the strand condition during the continuous casting. Distributed Fiber Bragg Grating sensors (FBGs) were used in this work to monitor strain at six roll positions in the caster. The sensor performance was first validated by comparing optical strain measurements with conventional strain gauge measurements in the lab. Next, optical strain measurements were performed on an isolated caster segment in a segment maintenance facility using hydraulic jacks to simulate the presence of a liquid core under the roll. Finally, the sensors were evaluated during caster operation. The sensors successfully detected the load increase associated with the presence of a liquid core under each instrumented roll location. Incidents of bulging and roll eccentricity were also detected using frequency analysis of the optical strain signal. The liquid core position measurements were compared using predictions from computer models (digital twins) in use at the production site. The measurements were in good agreement with the model predictions, with a few exceptions. Under certain transient caster operating conditions, such as spraying practice changes and SEN exchanges, the model predictions deviated slightly from the liquid core position determined from strain measurements.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...