Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255765

RESUMO

The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.


Assuntos
Dendrímeros , Fabaceae , Fulerenos , Glicina , Lisina , Simulação de Dinâmica Molecular , Peptídeos , Água
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834474

RESUMO

The molecular dynamics method was used to study the structure and properties of dendrigrafts of the first and second generations in methanol-water mixtures with various volume fractions of methanol. At a small volume fraction of methanol, the size and other properties of both dendrigrafts are very similar to those in pure water. A decrease in the dielectric constant of the mixed solvent with an increase in the methanol fraction leads to the penetration of counterions into the dendrigrafts and a reduction of the effective charge. This leads to a gradual collapse of dendrigrafts: a decrease in their size, and an increase in the internal density and the number of intramolecular hydrogen bonds inside them. At the same time, the number of solvent molecules inside the dendrigraft and the number of hydrogen bonds between the dendrigraft and the solvent decrease. At small fractions of methanol in the mixture, the dominant secondary structure in both dendrigrafts is an elongated polyproline II (PPII) helix. At intermediate volume fractions of methanol, the proportion of the PPII helix decreases, while the proportion of another elongated ß-sheet secondary structure gradually increases. However, at a high fraction of methanol, the proportion of compact α-helix conformations begins to increase, while the proportion of both elongated conformations decreases.


Assuntos
Metanol , Água , Metanol/química , Água/química , Lisina , Simulação de Dinâmica Molecular , Solventes/química , Estrutura Secundária de Proteína
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768408

RESUMO

In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.


Assuntos
Dendrímeros , Micelas , Lisina , Antracenos
4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769091

RESUMO

The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear-dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear-dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.


Assuntos
Micelas , Polímeros , Solventes/química , Polímeros/química
5.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674466

RESUMO

In this paper we study two lysine-based peptide dendrimers with Lys-His-Arg and Lys-Arg-His repeating units and terminal lysine groups. Combination of His and Arg properties in a dendrimer could be important for biomedical applications, especially for prevention of dendrimer aggregation and for penetration of dendrimers through various cell membranes. We describe the synthesis of these dendrimers and the confirmation of their structure using 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy and relaxation are used to study the structural and dynamic properties of these macromolecules and to compare them with properties of previously studied dendrimers with Lys-2Arg and Lys-2His repeating units. Our results demonstrate that both Lys-His-Arg and Lys-Arg-His dendrimers have pH sensitive conformation and dynamics. However, properties of Lys-His-Arg at normal pH are more similar to those of the more hydrophobic Lys-2His dendrimer, which has tendency towards aggregation, while the Lys-Arg-His dendrimer is more hydrophilic. Thus, the conformation with the same amino acid composition of Lys-His-Arg is more pH sensitive than Lys-Arg-His, while the presence of Arg groups undoubtedly increases its hydrophilicity compared to Lys-2His. Hence, the Lys-His-Arg dendrimer could be a more suitable (in comparison with Lys-2His and Lys-Arg-His) candidate as a pH sensitive nanocontainer for drug delivery.


Assuntos
Dendrímeros , Histidina , Histidina/química , Lisina/química , Dendrímeros/química , Arginina , Aminoácidos
6.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770963

RESUMO

Novel peptide dendrimer with Lys-2His repeating units was recently synthesized, studied by NMR (Molecules, 2019, 24, 2481) and tested as a nanocontainer for siRNA delivery (Int. J. Mol. Sci., 2020, 21, 3138). Histidine amino acid residues were inserted in the spacers of this dendrimer. Increase of their charge with a pH decrease turns a surface-charged dendrimer into a volume-charged one and should change all properties. In this paper, the molecular dynamics simulation method was applied to compare the properties of the dendrimer in water with explicit counterions at two different pHs (at normal pH with neutral histidines and at low pH with fully protonated histidines) in a wide interval of temperatures. We obtained that the dendrimer at low pH has essentially larger size and size fluctuations. The electrostatic properties of the dendrimers are different but they are in good agreement with the theoretical soft sphere model and practically do not depend on temperature. We have shown that the effect of pairing of side imidazole groups is much stronger in the dendrimer with neutral histidines than in the dendrimer with protonated histidines. We also demonstrated that the capacity of a nanocontainer based on this dendrimer with protonated histidines is significantly larger than that of a nanocontainer with neutral histidines.


Assuntos
Dendrímeros/química , Histidina/química , Nanopartículas/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830139

RESUMO

A new polycondensation aromatic rigid-chain polyester macroinitiator was synthesized and used to graft linear poly-2-ethyl-2-oxazoline as well as poly-2-isopropyl-2-oxazoline by cationic polymerization. The prepared copolymers and the macroinitiator were characterized by NMR, GPC, AFM, turbidimetry, static, and dynamic light scattering. The molar masses of the polyester main chain and the grafted copolymers with poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline side chains were 26,500, 208,000, and 67,900, respectively. The molar masses of the side chains of poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline and their grafting densities were 7400 and 3400 and 0.53 and 0.27, respectively. In chloroform, the copolymers conformation can be considered as a cylinder wormlike chain, the diameter of which depends on the side chain length. In water at low temperatures, the macromolecules of the poly-2-ethyl-2-oxazoline copolymer assume a wormlike conformation because their backbones are well shielded by side chains, whereas the copolymer with short side chains and low grafting density strongly aggregates, which was visualized by AFM. The phase separation temperatures of the copolymers were lower than those of linear analogs of the side chains and decreased with the concentration for both samples. The LCST were estimated to be around 45 °C for the poly-2-ethyl-2-oxazoline graft copolymer, and below 20 °C for the poly-2-isopropyl-2-oxazoline graft copolymer.


Assuntos
Poliaminas/química , Poliésteres/química , Polímeros/química , Temperatura , Algoritmos , Clorofórmio/química , Cinética , Microscopia de Força Atômica , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Peso Molecular , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Temperatura de Transição , Água/química
8.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371242

RESUMO

New peptide dendrimer with Lys-2Arg repeating units was recently studied experimentally by NMR (RSC Advances, 2019, 9, 18018) and tested as gene carrier successfully (Int. J. Mol. Sci., 2020, 21, 3138). The unusual slowing down of the orientational mobility of 2Arg spacers in this dendrimer was revealed. It has been suggested that this unexpected behavior is caused by the Arg-Arg pairing effect in water, which leads to entanglements between dendrimer branches. In this paper, we determine the reason for this slowing down using atomistic molecular dynamics simulation of this dendrimer. We present that the structural properties of Lys-2Arg dendrimer are close to those of the Lys-2Lys dendrimer at all temperatures (Polymers, 2020, 12, 1657). However, the orientational mobility of the H-H vector in CH2-N groups of 2Arg spacers in Lys-2Arg dendrimer is significantly slower than the mobility of the same vector in the Lys-2Lys dendrimer. This result is in agreement with the recent NMR experiments for the same systems. We revealed that this difference is not due to the arginine-arginine pairing, but is due to the semiflexibility effect associated with the different contour length from CH2-N group to the end of the side arginine or lysine segment in spacers.


Assuntos
Arginina/química , Dendrímeros/química , Técnicas de Transferência de Genes , Lisina/química , Fragmentos de Peptídeos/química , Polímeros/química , Arginina/genética , Terapia Genética , Humanos , Lisina/genética , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/genética
9.
Polymers (Basel) ; 12(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722466

RESUMO

In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.

10.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365579

RESUMO

The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra- and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy.


Assuntos
Dendrímeros , Técnicas de Transferência de Genes , Células Mieloides/metabolismo , Polilisina/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Humanos , Estrutura Molecular , Polilisina/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Células THP-1 , Transfecção/métodos
11.
Polymers (Basel) ; 12(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295011

RESUMO

End-grafting of polyelectrolyte chains to conducting substrates offers an opportunity to fabricate electro-responsive surfaces capable of changing their physical/chemical properties (adhesion, wettability) in response to applied electrical voltage. We use a self-consistent field numerical approach to compare the equilibrium properties of tethered strong and weak (pH-sensitive) polyelectrolytes to applied electrical field in both salt-free and salt-containing solutions. We demonstrate that both strong and weak polyelectrolyte brushes exhibit segregation of polyions in two populations if the surface is oppositely charged with respect to the brush. This segregation gives rise to complex patterns in the dependence of the brush thickness on salt concentration. We demonstrate that adjustable ionization of weak polyelectrolytes weakens their conformational response in terms of the dependence of brush thickness on the amplitude of the applied voltage.

12.
Bioorg Chem ; 95: 103504, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864904

RESUMO

In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Técnicas de Transferência de Genes , Lisina/farmacologia , Peptídeos/farmacologia , Plasmídeos/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Dendrímeros/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Lisina/química , Estrutura Molecular , Peptídeos/química , Relação Estrutura-Atividade , Transfecção
13.
J Chem Phys ; 151(21): 214902, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822102

RESUMO

Brushes formed by arm-tethered starlike polyelectrolytes may exhibit internal segregation into weakly and strongly extended populations (stratified two-layer structure) when strong ionic intermolecular repulsions induce stretching of the tethers up to the limit of their extensibility. We propose an approximate Poisson-Boltzmann theory for analysis of the structure of the stratified brush and compare it with results of numerical self-consistent field modeling. Both analytical and numerical models point to the formation of a narrow cloud of counterions (internal double electrical layer) localized inside a stratified brush at the boundary between the layers.

14.
Molecules ; 24(13)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284551

RESUMO

Peptide dendrimers, due to their biocompatibility and low toxicity, are highly promising candidates as nanocarriers for drugs and genes. The development of this kind of delivery system requires reliable monitoring of their metabolic and biological pathways. In this respect, hydrogen isotope labeling has tremendous importance, being a safe tool for detection of the labeled nanocarriers. In this work, we have synthesized new histidine-rich lysine-based dendrimers (Lys-2His dendrimer) with two linear histidine (His) residues in every inner segment. The presence of His residues has enabled us to perform controlled deuteration of Lys-2His dendrimers. The high deuteration degree (around 70%) does not practically change after redissolving the samples in H2O and heating them at 40 °C, which indicates the isotopic label stability.


Assuntos
Dendrímeros/química , Deutério/química , Histidina/química , Marcação por Isótopo , Lisina/química , Hidrogênio/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
15.
RSC Adv ; 9(31): 18018-18026, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520554

RESUMO

Due to their well-defined structure, multivalency, biocompatibility, and low toxicity, lysine dendrimers can be used as safe and efficient nanocarriers for drug and gene delivery. One useful strategy for improving the gene delivery properties of dendrimers is modification with arginine amino acid (Arg) residues. Incorporation of Arg residues could be favorable for the enhancement in transfection efficiency of lysine based dendrimers. In this work, we have synthesized a new second-generation poly-l-lysine dendrimer with repeating units containing two linear Arg residues between neighboring lysine branching points (Lys-2Arg dendrimer) and studied its physicochemical properties. We confirmed the structure of Lys-2Arg dendrimer using various one- and two-dimensional 1H and 13C NMR spectroscopy methods. Comparison of T 1H relaxation data for Lys-2Arg and Lys-2Lys dendrimers showed that the replacement of double Lys residues with double Arg residues resulted in a sharp decrease in the mobility of methylene groups in side segments and in the main chain of ε-Lys inner segments. We suggest that this unexpected effect is caused by a guanidine-guanidine pairing effect in water, which leads to entanglements between dendrimer branches.

16.
Pharmaceutics ; 10(3)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104488

RESUMO

Poly-l-ysine dendrigrafts are promising systems for biomedical applications due to their biodegradability, biocompatibility, and similarity to dendrimers. There are many papers about the use of dendrigrafts as nanocontainers for drug delivery. At the same time, the number of studies about their physical properties is limited, and computer simulations of dendrigrafts are almost absent. This paper presents the results of a systematic molecular dynamics simulation study of third-generation lysine dendrigrafts with different topologies. The size and internal structures of the dendrigrafts were calculated. We discovered that the size of dendrigrafts of the same molecular weight depends on their topology. The shape of all studied dendrigrafts is close to spherical. Density profile of dendrigrafts depends on their topology.

17.
Soft Matter ; 14(30): 6230-6242, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027975

RESUMO

Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach.

18.
Sci Rep ; 8(1): 8916, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891953

RESUMO

Peptide dendrimers are good candidates for diverse biomedical applications due to their biocompatibility and low toxicity. The local orientational mobility of groups with different radial localization inside dendrimers is important characteristic for drug and gene delivery, synthesis of nanoparticles, and other specific purposes. In this paper we focus on the validation of two theoretical assumptions for dendrimers: (i) independence of NMR relaxations on excluded volume effects and (ii) similarity of mobilities of side and terminal segments of dendrimers. For this purpose we study 1H NMR spin-lattice relaxation time, T1H, of two similar peptide dendrimers of the second generation, with and without side fragments in their inner segments. Temperature dependences of 1/T1H in the temperature range from 283 to 343 K were measured for inner and terminal groups of the dendrimers dissolved in deuterated water. We have shown that the 1/T1H temperature dependences of inner groups for both dendrimers (with and without side fragments) practically coincide despite different densities of atoms inside these dendrimers. This result confirms the first theoretical assumption. The second assumption is confirmed by the 1/T1H temperature dependences of terminal groups which are similar for both dendrimers.


Assuntos
Dendrímeros/química , Conformação Molecular/efeitos da radiação , Peptídeos/química , Espectroscopia de Ressonância Magnética , Temperatura , Água/química
19.
J Phys Chem B ; 121(41): 9518-9525, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-28950699

RESUMO

The kinetics of loop formation, i.e., the occurrence of contact between two atoms of a polypeptide, remains the focus of continuing interest. One of the reasons is that contact formation is the elementary event underlying processes such as folding and binding. More importantly, it is experimentally measurable and can be predicted theoretically for ideal polymers. Deviations from single exponential kinetics have sometimes been interpreted as a signature of rugged, protein-like, free energy landscapes. Here we present simulations, with different atomistic models, of short peptides with varied structural propensity, and of a structured protein. Results show exponential contact formation kinetics (or relaxation) at long times, and a power law relaxation at very short times. At intermediate times, a deviation from either power law or simple exponential kinetics is observed that appears to be characteristic of polypeptides with either specific or nonspecific attractive interactions but disappears if attractive interactions are absent. Our results agree with recent experimental measurements on peptides and proteins and offer a comprehensive interpretation for them.


Assuntos
Peptídeos/química , Proteínas/química , Proteínas Arqueais/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Cinética , Modelos Moleculares , Dobramento de Proteína , Sulfolobus acidocaldarius/química , Termodinâmica
20.
Phys Chem Chem Phys ; 18(35): 24307-17, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27531617

RESUMO

The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and bonds in dendrimer models with and without EV interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...