Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 468(7320): 84-8, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21048764

RESUMO

The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.


Assuntos
Clima Frio , Camada de Gelo , Água do Mar/análise , Movimentos da Água , Oceano Atlântico , Atmosfera/química , Carbono/análise , Foraminíferos/metabolismo , História Antiga , Temperatura
2.
Anal Chem ; 81(5): 1914-9, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19203199

RESUMO

This manuscript describes a new protocol for determination of Pa/Th/U in marine sediments. It is based on microwave-assisted digestion and represents an important reduction of working time over conventional hot-plate digestion methods, and the use of HClO(4) is avoided. Although Th and U are completely dissolved with a first microwave step, around 40% of (231)Pa remains undissolved, and a short hot-plate step with reverse aqua regia is required to achieve total digestion and spike equilibration. Next, the method involves a separation of these elements and a further purification of the Pa fraction using Dowex AG1-X8 resin. Separation with Bio-Rad and Sigma-Aldrich resins was compared; although both perform similarly for Th and U, Pa yields are higher with Bio-Rad. Finally, samples are measured using a Nu instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS). Overall chemical yields range around 50% for Pa, 60% for Th, and 70% for U.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...