Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Environ Biophys ; 62(3): 357-369, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37452828

RESUMO

The synergy of superparamagnetic iron oxide nanoparticles (SPIONs) and ionizing radiation (IR), attributed to reactive oxygen species (ROS) and DNA double-strand breaks (DSBs) increase, was widely investigated in different cancers, but scarcely in melanoma. Herein, SPIONs were evaluated as radiosensitizers in A-375 human melanoma cells. Moreover, the effect of the combined treatment of SPIONs and gamma irradiation (SPIONs-IR) was assessed at the DNA level, where DSBs induction and their repair capacity were studied. SPIONs were synthesized, stabilized by poly(ethylene glycol) methyl ether and physicochemically characterized by high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction and magnetometry and dynamic light scattering. The obtained nanoparticles showing superparamagnetic behavior and low dispersion in shape and sizes were tested in A-375 cells. The intracellular internalization of SPIONs was verified by HR-TEM and quantified by inductively coupled plasma atomic emission spectroscopy. Cells treated with SPIONs exhibited high ROS levels without associated cytotoxicity. Next, a significant radiosensitization in SPIONs-IR vs. control (IR) cells was demonstrated at 1 Gy of gamma radiation. Furthermore, a decreased DSBs repair capacity in SPIONs-IR vs. IR-treated cells was evidenced by the size increase of persistent phosphorylated H2AX foci at 24 h post-irradiation. In conclusion, these nanoparticles show the potential to radiosensitize melanoma cells by the induction of unrepairable DNA damage.


Assuntos
Dano ao DNA , Melanoma , Humanos , Espécies Reativas de Oxigênio , Nanopartículas Magnéticas de Óxido de Ferro , Melanoma/radioterapia , Quebras de DNA de Cadeia Dupla
2.
Radiother Oncol ; 154: 21-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931891

RESUMO

BACKGROUND AND PURPOSE: The high-throughput analysis of gene expression in ionizing radiation (IR)-exposed human peripheral white blood cells (WBC) has emerged as a novel method for biodosimetry markers detection. We aimed to detect IR-exposure differential expressed genes (DEGs) as potential predictive biomarkers for biodosimetry and radioinduced-response. MATERIALS AND METHODS: We performed a meta-analysis of raw data from public microarrays of ex vivo low linear energy transfer-irradiated human peripheral WBC. Functional enrichment and transcription factors (TF) detection from resulting DEGs were assessed. Six selected DEGs among studies were validated by qRT-PCR on mRNA from human peripheral blood samples from nine healthy human donors 24 h after ex vivo X-rays-irradiation. RESULTS: We identified 275 DEGs after IR-exposure (parameters: |lfc| ≥ 0.7, q value <0.05), enriched in processes such as regulation after IR-exposure, DNA damage checkpoint, signal transduction by p53 and mitotic cell cycle checkpoint. Among these DEGs, DRAM1, NUDT15, PCNA, PLK2 and TIGAR were selected for qRT-PCR validation. Their expression levels significantly increased at 1-4 Gy respect to non-irradiated controls. Particularly, PCNA increased dose dependently. Curiously, TCF4 (Entrez Gene: 6925), detected as overrepresented TF in the radioinduced DEGs set, significantly decreased post-irradiation. CONCLUSION: These six DEGs show potential to be proposed as candidates for IR-exposure biomarkers, considering their observed molecular radioinduced-response. Among them, TCF4, bioinformatically detected, was validated herein as an IR-responsive gene.


Assuntos
Exposição à Radiação , Radiação Ionizante , Biomarcadores , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Humanos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...