Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Cell Biochem Biophys ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771457

RESUMO

The Wnt signaling pathway is identified as one of the main disrupted pathways in Colorectal cancer (CRC). Results from studies focusing on this route will aid greatly in the detection and treatment of CRC. MicroRNAs (MiRs), particularly MiR-490, has emerged as key regulator of gene expression in biological pathways, making it an attractive research target. This is notably true for the Wnt signaling pathway, which is usually disordered in CRC tissues. This study aimed to evaluate the expression level of MiR-490 isomiRs and determine some of its key target genes involved in Wnt signaling pathway in CRC tissues and cell lines, based on experimental and bioinformatics analysis. Elevated expression of GSK3ß and CCND1 indicate that the progression of CRC tumor is associated with the inhibitory effect of MiR-490 isomiRs on the Wnt/ß-catenin signaling pathway. This finding was supported by the observation of a positive connection between the expression pattern of miR-490-3p and 5p, and CCND1 and GSK3ß in CRC. The valuable results of this study provide a means of identifying biomarkers with the potential to either inhibit or activate CRC cellular pathways.

2.
Eur J Immunol ; 54(2): e2350637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990855

RESUMO

Due to the lack of biomarkers predictive of response to atezolizumab-bevacizumab, the standard of care for advanced HCC, we analyzed baseline and early on-treatment variation of peripheral lymphocyte populations of 37 prospective patients treated by atezolizumab-bevacizumab and in 15 prospective patients treated by sorafenib or lenvatinib (TKIs). RNAseq analysis followed by RT-PCR validation on patients-derived PBMC was also performed. At first imaging, re-evaluation 13 patients receiving atezolizumab-bevacizumab, showed an objective response, 17 stable disease, while 7 were nonresponders. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes were lower in responders versus nonresponders (T-test, p = 0.012 and 0.004, respectively). At 3 weeks, 28 of 30 responders displayed a rise of CD8+PD1+ lymphocytes with a positive mean fold change of 4.35 (±5.6 SD), whereas 6 of 7 nonresponders displayed a negative fold change of 0.89 (±0.84 SD). These changes were not observed in patients treated by TKIs. TRIM56, TRIM16, TRIM64, and Ki67 mRNAs were validated as upregulated in responders versus nonresponders after 3 weeks after treatment start, providing possible evidence of immune activation. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes and early changes in CD8+PD1+ lymphocytes predict response to atezolizumab-bevacizumab providing noninvasive markers to complement clinical practice in the very early phases of treatment of HCC patients.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Bevacizumab/uso terapêutico , Antígeno B7-H1 , Estudos Prospectivos , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Biomarcadores Tumorais , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
3.
J Exp Clin Cancer Res ; 42(1): 145, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301960

RESUMO

BACKGROUND: Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS: Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS: MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS: MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo
4.
Mol Oncol ; 17(5): 713-717, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916500

RESUMO

Accuracy and transparency of scientific data are becoming more and more relevant with the increasing concern regarding the evaluation of data reproducibility in many research areas. This concern is also true for quantifying coding and noncoding RNAs, with the remarkable increase in publications reporting RNA profiling and sequencing studies. To address the problem, we propose the following recommendations: (a) accurate documentation of experimental procedures in Materials and methods (and not only in the supplementary information, as many journals have a strict mandate for making Materials and methods as visible as possible in the main text); (b) submission of RT-qPCR raw data for all experiments reported; and (c) adoption of a unified, simple format for submitted RT-qPCR raw data. The Real-time PCR Data Essential Spreadsheet Format (RDES) was created for this purpose.


Assuntos
RNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656861

RESUMO

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Mesotelioma Maligno , Mesotelioma , Ubiquitina Tiolesterase , Humanos , Heterozigoto , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicações , Mutação , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
8.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077295

RESUMO

This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expression analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of ontological term analysis are presented along with some results of current interest for forthcoming experimental research in the field of the transcriptomic landscape of CML. In particular, we present two methods that differ in the order of the analysis steps. After a gene selection based on fold-change value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we applied two different methods on the set of differentially expressed genes. With the first method (Method 1), we implemented GSEA, followed by the identification of transcription factors. With the second method (Method 2), we first selected the transcription factors from the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to identify transcription factors more specifically involved in biological processes relevant to the CML condition. Both methods have been equipped in ontological knowledge mining and word cloud analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, further validating the approach and identifying a new molecular mechanism of tumor suppression governed by PTPRG in a CML context.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Genes Supressores de Tumor , Humanos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Monoéster Fosfórico Hidrolases/genética , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genética
9.
Mol Ther Nucleic Acids ; 29: 538-549, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035756

RESUMO

Palbociclib is in early-stage clinical testing in advanced hepatocellular carcinoma (HCC). Here, we investigated whether the anti-tumor activity of palbociclib, which prevents the CDK4/6-mediated phosphorylation of RB1 but simultaneously activates AKT signaling, could be improved by its combination with a PI3K/AKT/mTOR inhibitor in liver cancer models. The selective pan-AKT inhibitor, MK-2206, or the microRNA-199a-3p were tested in combination with palbociclib in HCC cell lines and in the TG221 HCC transgenic mouse model. The combination palbociclib/MK-2206 was highly effective, but too toxic to be tolerated by mice. Conversely, the combination miR-199a-3p mimics/palbociclib not only induced a complete or partial regression of tumor lesions, but was also well tolerated. After 3 weeks of treatment, the combination produced a significant reduction in number and size of tumor nodules in comparison with palbociclib or miR-199a-3p mimics used as single agents. Moreover, we also reported the efficacy of this combination against sorafenib-resistant cells in vitro and in vivo. At the molecular level, the combination caused the simultaneous decrease of the phosphorylation of both RB1 and of AKT. Our findings provide pre-clinical evidence for the efficacy of the combination miR-199a-3p/palbociclib as anti-HCC treatment or as a new approach to overcome sorafenib resistance.

10.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954369

RESUMO

Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR. Receiver Operating Characteristics (ROC), Kaplan-Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.

11.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955679

RESUMO

Liquid biopsy has advantages over tissue biopsy, but also some technical limitations that hinder its wide use in clinical applications. In this study, we aimed to evaluate the usefulness of liquid biopsy for the clinical management of patients with advanced-stage oncogene-addicted non-small-cell lung adenocarcinomas. The investigation was conducted on a series of cases-641 plasma samples from 57 patients-collected in a prospective consecutive manner, which allowed us to assess the benefits and limitations of the approach in a real-world clinical context. Thirteen samples were collected at diagnosis, and the additional samples during the periodic follow-up visits. At diagnosis, we detected mutations in ctDNA in 10 of the 13 cases (77%). During follow-up, 36 patients progressed. In this subset of patients, molecular analyses of plasma DNA/RNA at progression revealed the appearance of mutations in 29 patients (80.6%). Mutations in ctDNA/RNA were typically detected an average of 80 days earlier than disease progression assessed by RECIST or clinical evaluations. Among the cases positive for mutations, we observed 13 de novo mutations, responsible for the development of resistance to therapy. This study allowed us to highlight the advantages and disadvantages of liquid biopsy, which led to suggesting algorithms for the use of liquid biopsy analyses at diagnosis and during monitoring of therapy response.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/patologia , Mutação , Oncogenes , Estudos Prospectivos , RNA
12.
J Pineal Res ; 73(2): e12818, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841265

RESUMO

Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.


Assuntos
Lesões Encefálicas , Hipotermia , Hipóxia-Isquemia Encefálica , Melatonina , MicroRNAs , Animais , Animais Recém-Nascidos , Humanos , Hipotermia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , MicroRNAs/genética , Proteína Quinase C-alfa , Proteínas Proto-Oncogênicas c-akt , Ratos
13.
Cell Biol Int ; 46(7): 1047-1061, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35347810

RESUMO

Gene mutations may affect the fate of many tumors including prostate cancer (PCa); therefore, the research of specific mutations associated with tumor outcomes might help the urologist to identify the best therapy for PCa patients such as surgical resection, adjuvant therapy or active surveillance. Genomic DNA (gDNA) was extracted from 48 paraffin-embedded PCa samples and normal paired tissues. Next, gDNA was amplified and analyzed by next-generation sequencing (NGS) using a specific gene panel for PCa. Raw data were refined to exclude false-positive mutations; thus, variants with coverage and frequency lower than 100× and 5%, respectively were removed. Mutation significance was processed by Genomic Evolutionary Rate Profiling, ClinVar, and Varsome tools. Most of 3000 mutations (80%) were single nucleotide variants and the remaining 20% indels. After raw data elaboration, 312 variants were selected. Most mutated genes were KMT2D (26.45%), FOXA1 (16.13%), ATM (15.81%), ZFHX3 (9.35%), TP53 (8.06%), and APC (5.48%). Hot spot mutations in FOXA1, ATM, ZFHX3, SPOP, and MED12 were also found. Truncating mutations of ATM, lesions lying in hot spot regions of SPOP and FOXA1 as well as mutations of TP53 correlated with poor prognosis. Importantly, we have also found some germline mutations associated with hereditary cancer-predisposing syndrome. gDNA sequencing of 48 cancer tissues by NGS allowed to detect new tumor variants as well as confirmed lesions in genes linked to prostate cancer. Overall, somatic and germline mutations linked to good/poor prognosis could represent new prognostic tools to improve the management of PCa patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias da Próstata , Mutação em Linhagem Germinativa , Humanos , Masculino , Mutação/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética
14.
Life (Basel) ; 12(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207576

RESUMO

The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called "cytokine storm", derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host-virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.

15.
Mol Cancer Ther ; 21(1): 58-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667115

RESUMO

Ewing sarcoma, a highly aggressive pediatric tumor, is driven by EWS-FLI1, an oncogenic transcription factor that remodels the tumor genetic landscape. Epigenetic mechanisms play a pivotal role in Ewing sarcoma pathogenesis, and the therapeutic value of compounds targeting epigenetic pathways is being identified in preclinical models. Here, we showed that modulation of CD99, a cell surface molecule highly expressed in Ewing sarcoma cells, may alter transcriptional dysregulation in Ewing sarcoma through control of the zyxin-GLI1 axis. Zyxin is transcriptionally repressed, but GLI1 expression is maintained by EWS-FLI1. We demonstrated that targeting CD99 with antibodies, including the human diabody C7, or genetically inhibiting CD99 is sufficient to increase zyxin expression and induce its dynamic nuclear accumulation. Nuclear zyxin functionally affects GLI1, inhibiting targets such as NKX2-2, cyclin D1, and PTCH1 and upregulating GAS1, a tumor suppressor protein negatively regulated by SHH/GLI1 signaling. We used a battery of functional assays to demonstrate (i) the relationship between CD99/zyxin and tumor cell growth/migration and (ii) how CD99 deprivation from the Ewing sarcoma cell surface is sufficient to specifically affect the expression of some crucial EWS-FLI1 targets, both in vitro and in vivo, even in the presence of EWS-FLI1. This article reveals that the CD99/zyxin/GLI1 axis is promising therapeutic target for reducing Ewing sarcoma malignancy.


Assuntos
Antígeno 12E7 , Proteínas de Fusão Oncogênica , Oncogenes , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Sarcoma de Ewing , Proteína GLI1 em Dedos de Zinco , Zixina , Animais , Humanos , Camundongos , Antígeno 12E7/metabolismo , Camundongos Nus , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transfecção , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Zixina/genética
16.
Cell Death Dis ; 12(12): 1088, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789738

RESUMO

Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.


Assuntos
Exossomos/metabolismo , Melanoma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Receptores Purinérgicos P2X7/genética
17.
Cancers (Basel) ; 13(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34503164

RESUMO

Drug resistance is one of the major forces driving a poor prognosis during the treatment and progression of human colon carcinomas. The molecular mechanisms that regulate the diverse processes underlying drug resistance are still under debate. MicroRNAs (miRNAs) are a subgroup of non-coding RNAs increasingly found to be associated with the regulation of tumorigenesis and drug resistance. We performed a systematic review of the articles concerning miRNAs and drug resistance in human colon cancer published from 2013 onwards in journals with an impact factor of 5 or higher. First, we built a network with the most studied miRNAs and targets (as nodes) while the drug resistance/s are indicated by the connections (edges); then, we discussed the most relevant miRNA/targets interactions regulated by drugs according to the network topology and statistics. Finally, we considered the drugs as nodes in the network, to allow an alternative point of view that could flow through the treatment options and the associated molecular pathways. A small number of microRNAs and proteins appeared as critically involved in the most common drugs used for the treatment of patients with colon cancer. In particular, the family of miR-200, miR34a, miR-155 and miR-17 appear as the most relevant microRNAs. Thus, regulating these miRNAs could be useful for interfering with some drug resistance mechanisms in colorectal carcinoma.

18.
Biomedicines ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356875

RESUMO

Human hepatocellular carcinoma (HCC) is the most frequent primary tumor of the liver and the third cause of cancer-related deaths. The multikinase inhibitor sorafenib is a systemic drug for unresectable HCC. The identification of molecular biomarkers for the early diagnosis of HCC and responsiveness to treatment are needed. In this work, we performed an exploratory study to investigate the longitudinal levels of cell-free long ncRNA GAS5 and microRNAs miR-126-3p and -23b-3p in a cohort of 7 patients during the period of treatment with sorafenib. We used qPCR to measure the amounts of GAS5 and miR-126-3p and droplet digital PCR (ddPCR) to measure the levels of miR-23b-3p. Patients treated with sorafenib displayed variable levels of GAS5, miR-126-3p and miR-23b-3p at different time-points of follow-up. miR-23b-3p was further measured by ddPCR in 37 healthy individuals and 25 untreated HCC patients. The amount of miR-23b-3p in the plasma of untreated HCC patients was significantly downregulated if compared to healthy individuals. The ROC curve analysis underlined its diagnostic relevance. In conclusion, our results highlight a potential clinical significance of circulating miR-23b-3p and an exploratory observation on the longitudinal plasmatic levels of GAS5, miR-126-3p and miR-23b-3p during sorafenib treatment.

19.
Cell Death Dis ; 12(5): 473, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980826

RESUMO

Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.


Assuntos
Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Melanoma/patologia , Pessoa de Meia-Idade , Neoplasias Cutâneas/patologia
20.
Endocrine ; 73(1): 177-185, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417142

RESUMO

PURPOSE: Conventional (CONV) treatment of adrenal insufficiency (AI) is associated with risk of overtreatment: glyco-metabolic impairment, bone loss, and reduced quality of life. Recent findings suggest that modified-release hydrocortisone (MOD) may restore a more physiological cortisol profile. Our aims were: (1) to compare the gene expression profile of peripheral blood mononuclear cells derived from patients, with secondary AI (SAI), under CONV (cortisone acetate or hydrocortisone) or MOD versus healthy controls; and (2) to evaluate MOD effects on serum cortisol profile, glucose, lipid, bone, and clinical parameters. METHODS: Thirteen patients with SAI were switched from CONV to MOD at equivalent dose. Area under curve (AUC) of both formulations was calculated in six patients. Clinical, metabolic and bone parameters were measured at baseline and 3 months after MOD in all patients. In six patients and six age- and sex-matched healthy controls, a whole-genome expression analysis was performed at baseline, 1 month, and 3 months after MOD. RESULTS: (1) The number of genes differentially expressed (n = 235; mainly involved in immune response and metabolism) in SAI patients compared to controls progressively and significantly decreased switching from CONV to MOD (n = 78 at 3 months). (2) Under MOD: AUC of cortisol exposure tended to be smaller and cortisol levels showed a more physiological profile; no significant changes of clinical, metabolic and bone parameters were observed, likely due to the short follow-up, but triglycerides tended slightly to increase. CONCLUSIONS: MOD may restore a normal gene expression profile as soon as 1 month after switching from CONV.


Assuntos
Insuficiência Adrenal , Cortisona , Insuficiência Adrenal/tratamento farmacológico , Insuficiência Adrenal/genética , Humanos , Hidrocortisona , Leucócitos Mononucleares , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...