Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272426

RESUMO

The industrial use of TEMPO-mediated oxidation (TMO) reaction to produce highly fibrillated cellulose nanofibrils has been hindered by high catalyst costs, long reaction times and high reaction volumes. The hypothesis that cellulose concentration during TMO process is key to increase the process of efficiency has been confirmed. The novelty of this research is the proof-of-concept for a significant enhancement of the TMO reaction by kneading the cellulose to work in concentrations above 120 g/L. Results show that the increase of the cellulose concentration in the TMO reaction, from the traditional 10 g/L to 120 g/L, increase not only the production for the same reaction volume (1200 %) but also the pulp recovery (up to 94 %). Moreover, the oxidation time can be reduced from 42 min to only 4 min while properties of both the oxidized pulps and the final nanocellulose are similar. On the other hand, the use of buffers in the TMO reaction allows us to keep the pH constant without using NaOH, and to improve the selectivity of the carboxyl groups production. The proposed process also minimizes the final environmental impact.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Óxidos N-Cíclicos/química , Oxirredução
2.
Environ Sci Pollut Res Int ; 31(1): 931-947, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036906

RESUMO

Pyrolysis has become an interesting waste valorization method leading to an increasing number of research studies in this field in the last decade. The present study aims to provide a comprehensive knowledge map of scientific production in pyrolysis, discuss the current state of research, and identify the main research hotspots and trends in recent years. The systematic review, supported by analysis of countries and institutions, keyword co-occurrence analysis, analysis of keyword trends, journal analysis, and article impact, was carried out on 6234 journal articles from the Science Citation Index Expanded database of the Web of Science Core Collection. As a result, four main research hotspots were identified: 1) characterization techniques and pyrolysis kinetic models, 2) biochar production and its main applications, 3) bio-oil production and catalytic pyrolysis, and 4) co-pyrolysis, which has become a consolidated research hotspot since 2018. Additionally, the main challenges and opportunities for future research have been identified, such as 1) the development of multi-step kinetic models for studying complex wastes, 2) the integration of biochar into other valorization processes, such as anaerobic digestion, and 3) the development of catalytic hydropyrolysis for the valorization of organic waste. This bibliometric analysis provides a visualization of the current context and future trends in pyrolysis, facilitating future collaborative research and knowledge exchange.


Assuntos
Bibliometria , Carvão Vegetal , Pirólise , Catálise
3.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764564

RESUMO

The cost-effective implementation of nanofibrillated cellulose (CNF) at industrial scale requires optimizing the quality of the nanofibers according to their final application. Therefore, a portfolio of CNFs with different qualities is necessary, as well as further knowledge about how to obtain each of the main qualities. This paper presents the influence of various production techniques on the morphological characteristics and properties of CNFs produced from a mixture of recycled fibers. Five different pretreatments have been investigated: a mechanical pretreatment (PFI refining), two enzymatic hydrolysis strategies, and TEMPO-mediated oxidation under two different NaClO concentrations. For each pretreatment, five high-pressure homogenization (HPH) conditions have been considered. Our results show that the pretreatment determines the yield and the potential of HPH to enhance fibrillation and, therefore, the final CNF properties. These results enable one to select the most effective production method with the highest yield of produced CNFs from recovered paper for the desired CNF quality in diverse applications.

4.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765537

RESUMO

Bacterial cellulose (BC) is a highly crystalline nanosized material with a high number of active groups. This study focuses on the synthesis of BC membranes through fermentation, their characterization and application to remove Ni(II) and Pb(II) from wastewater by adsorption under different conditions. Four-day-grown BC membranes form three-dimensional nanofibril networks with a pH of 6.3 and a high cationic demand (52.5 µeq·g-1). The pseudo-second-order kinetic model and the Sips isotherm model best describe the adsorption of both metals. The intraparticle diffusion model of Ni(II) revealed a three-step mechanism of adsorption-plateau-adsorption, while Pb(II) adsorption followed a typical reducing-slope trend up to saturation. The highest removal of Ni(II) and Pb(II) was obtained at pH 4 with a BC dosage of 400 mg·L-1. The maximum adsorption capacities were 28.18 mg·g-1 and 8.49 mg·g-1 for Ni(II) and Pb(II), respectively, involving the total coverage of the material active sites. Thermodynamically, Ni(II) adsorption was exothermic, and Pb(II) was endothermic. The obtained values of sorption heat, activation and Gibbs' energy depicted a physisorption process. Ni(II) removal mechanism was ruled by crystallization on the metals adsorbed on the BC active groups, while Pb(II) was driven by the adsorption process, as shown by TEM images of the spent material.

5.
Carbohydr Polym ; 319: 121168, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567710

RESUMO

The potential of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-mediated oxidation (TMO) to produce cellulose nanofibrils (CNFs) is hindered using costly and environmentally harmful catalysts, limiting its large-scale implementation. To promote sustainability, the TMO medium should be reused but there is a lack of knowledge on this process. The novelty of this research is the identification of the key parameters that affect the recirculation of the TMO medium, and their impact on the quality of the oxidized pulps and CNF products. Contrary to previous hypothesis, results show that the accumulation of salts is not a key parameter; instead, the pulp consistency during oxidation plays a vital role since concentrations higher than 10 g/L led to better CNF quality. Thus, reusing 75 % of the reaction medium, when high pulp consistency is used, does not alter the CNF properties. By reusing the reaction medium up to six times, the catalyst dose is dramatically reduced by >90 % for TEMPO and 80 % for NaBr, compared to the conventional process (0.1 mmol of TEMPO/g and 1 mmol of NaBr/g without medium reuse). Additionally, the high consistency oxidation enables a reduction of >80 % in the reaction time and effluent, and thus a threefold increase in CNF production.

6.
Int J Biol Macromol ; 248: 125886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481180

RESUMO

The use of cellulose micro/nanofibrils (CMNFs) as reinforcement paper additive at industrial scale is delayed due to inconsistent results, suggesting a lack of proper consideration of some key parameters. The high influence of fibrillated nanocellulose dispersion has been recently identified as a key parameter for paper bulk reinforcement but it has not been studied for surface coating applications yet. This paper studies the effect of CMNF dispersion degree prior to their addition and during mixing with starch on the reinforcement of paper by coating. Results show that this effect depends on the type of CMNFs since it is related to the surface interactions. For a given formulation, a correlation is observed between the CMNF dispersion and the CMNF/starch mixing agitation with the rheology of the coating formulation which highly affects the paper properties. The optimal dispersion degree is different for each nanocellulose, but the best mechanical properties were always achieved at the lowest viscosity of the coating formulation. In general, the initial state of the nanocellulose 3D network, influences the mixing and smooth application of the coating and affects the reinforcement effect. Therefore, the CMNF industrial implementation in coating formulations will be facilitated by the on-line control of formulations prior to their surface application.


Assuntos
Celulose , Indústrias , Reologia , Amido , Viscosidade
7.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446447

RESUMO

To extend the application of cost-effective high-yield pulps in packaging, strength and barrier properties are improved by advanced-strength additives or by hot-pressing. The aim of this study is to assess the synergic effects between the two approaches by using nanocellulose as a bulk additive, and by hot-pressing technology. Due to the synergic effect, dry strength increases by 118% while individual improvements are 31% by nanocellulose and 92% by hot-pressing. This effect is higher for mechanical fibrillated cellulose. After hot-pressing, all papers retain more than 22% of their dry strength. Hot-pressing greatly increases the paper's ability to withstand compressive forces applied in short periods of time by 84%, with a further 30% increase due to the synergic effect of the fibrillated nanocellulose. Hot-pressing and the fibrillated cellulose greatly decrease air permeability (80% and 68%, respectively) for refining pretreated samples, due to the increased fiber flexibility, which increase up to 90% using the combined effect. The tear index increases with the addition of nanocellulose, but this effect is lost after hot-pressing. In general, fibrillation degree has a small effect which means that low- cost nanocellulose could be used in hot-pressed papers, providing products with a good strength and barrier capacity.

8.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242009

RESUMO

The international research community has made significant efforts in the production, characterization, and application of cellulose nanofibers (CNFs) in many sectors [...].

9.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500795

RESUMO

Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard's reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L-1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L-1). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g-1. Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.

10.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558352

RESUMO

Vegetable supply in the world is more than double than vegetable intake, which supposes a significant waste of vegetables, in addition to the agricultural residues produced. As sensitive food products, the reasons for this waste vary from the use of only a part of the vegetable due to its different properties to the product appearance and market image. An alternative high-added-value application for these wastes rich in cellulose could be the reduction in size to produce lignocellulose micro- and nanofibrils (LCMNF). In this sense, a direct treatment of greengrocery waste (leek, lettuce, and artichoke) to produce LCMNFs without the extraction of cellulose has been studied, obtaining highly concentrated suspensions, without using chemicals. After drying the wastes, these suspensions were produced by milling and blending at high shear followed by several passes in the high-pressure homogenizer (up to six passes). The presence of more extractives and shorter fiber lengths allowed the obtention of 5-5.5% leek LCMNF suspensions and 3.5-4% lettuce LCMNF suspensions, whereas for artichoke, only suspensions of under 1% were obtained. The main novelty of the work was the obtention of a high concentration of micro- and nanofiber suspension from the total waste without any pretreatment. These high concentrations are not obtained from other raw materials (wood or annual plants) due to the clogging of the homogenizer, requiring the dilution of the sample up to 1% or the use of chemical pretreatments.

11.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36015682

RESUMO

Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis of this work is that hydrophobization can be used to improve their ability as adsorbents. Therefore, hydrophobic CNF was applied to adsorb hexavalent chromium from wastewater. CNF was synthetized by TEMPO-mediated oxidation, followed by mechanical disintegration. Hydrophobization was performed using methyl trimetoxysilane (MTMS) as a hydrophobic coating agent. The adsorption treatment of hexavalent chromium with hydrophobic CNF was optimized by studying the influence of contact time, MTMS dosage (0-3 mmol·g-1 CNF), initial pH of the wastewater (3-9), initial chromium concentration (0.10-50 mg·L-1), and adsorbent dosage (250-1000 mg CNF·L-1). Furthermore, the corresponding adsorption mechanism was identified. Complete adsorption of hexavalent chromium was achieved with CNF hydrophobized with 1.5 mmol MTMS·g-1 CNF with the faster adsorption kinetic, which proved the initial hypothesis that hydrophobic CNF improves the adsorption capacity of hydrophilic CNF. The optimal adsorption conditions were pH 3 and the adsorbent dosage was over 500 mg·L-1. The maximum removal was found for the initial concentrations of hexavalent chromium below 1 mg·L-1 and a maximum adsorption capacity of 70.38 mg·g-1 was achieved. The kinetic study revealed that pseudo-second order kinetics was the best fitting model at a low concentration while the intraparticle diffusion model fit better for higher concentrations, describing a multi-step mechanism of hexavalent chromium onto the adsorbent surface. The Freundlich isotherm was the best adjustment model.

12.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564321

RESUMO

The current trends in micro-/nanofibers offer a new and unmissable chance for the recovery of cellulose from non-woody crops. This work assesses a technically feasible approach for the production of micro- and nanofibrillated cellulose (MNFC) from jute, sisal and hemp, involving refining and enzymatic hydrolysis as pretreatments. Regarding the latter, only slight enhancements of nanofibrillation, transparency and specific surface area were recorded when increasing the dose of endoglucanases from 80 to 240 mg/kg. This supports the idea that highly ordered cellulose structures near the fiber wall are resistant to hydrolysis and hinder the diffusion of glucanases. Mechanical MNFC displayed the highest aspect ratio, up to 228 for hemp. Increasing the number of homogenization cycles increased the apparent viscosity in most cases, up to 0.14 Pa·s at 100 s-1 (1 wt.% consistency). A shear-thinning behavior, more marked for MNFC from jute and sisal, was evidenced in all cases. We conclude that, since both the raw material and the pretreatment play a major role, the unique characteristics of non-woody MNFC, either mechanical or enzymatically pretreated (low dose), make it worth considering for large-scale processes.

13.
Nanomaterials (Basel) ; 12(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269278

RESUMO

The dispersion degree of cellulose micro and nanofibrils (CMFs/CNFs) in water suspensions is key to understand and optimize their effectiveness in several applications. In this study, we proposed a method, based on gel point (Øg), to calculate both aspect ratio and dispersion degree. This methodology was validated through the morphological characterization of CMFs/CNFs by Transmission Electronic Microscopy. The influence of dispersion degree on the reinforcement of recycled cardboard has also been evaluated by stirring CMF/CNF suspensions at different speeds. Results show that as stirring speed increases, Øg decreased to a minimum value, in which the aspect ratio is maximum. Then, Øg increased again. Suspensions with lower Øg, in the intermediate region of agitation present very good dispersion behavior with an open and spongy network structure, in which nanofibril clusters are totally dispersed. Higher stirring speeds shorten the nanofibrils and the networks collapse. Results show that the dispersion of the nanocellulose at the minimum Øg before their addition to the pulp, produces higher mechanical properties, even higher than when CNFs and pulp are agitated together. This method allows for the determination of the CMF/CNF dispersion, to maximize their behavior as strength agents. This knowledge would be crucial to understand why some industrial trials did not give satisfactory results.

14.
Int J Biol Macromol ; 205: 220-230, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182566

RESUMO

Current knowledge on the properties of different types of cellulose nanofibers (CNFs) is fragmented. Properties variation is very extensive, depending on raw materials, effectiveness of the treatments to extract the cellulose fraction from the lignocellulosic biomass, pretreatments to facilitate cellulose fibrillation and final mechanical process to separate the microfibrils. Literature offers multiple parameters to characterize the CNFs prepared by different routes. However, there is a lack of an extensive guide to compare the CNFs. In this study, we perform a critical comparison of rheological, compositional, and morphological features of CNFs, produced from the most representative types of woody plants, hardwood and softwood, using different types and intensities of pretreatments, including enzymatic, chemical and mechanical ones, and varying the severity of mechanical treatment focusing on the relationship between macroscopic and microscopic parameters. This structured information will be exceedingly useful to select the most appropriate CNF for a certain application based on the most relevant parameters in each case.


Assuntos
Nanofibras , Biomassa , Celulose/química , Fenômenos Mecânicos , Nanofibras/química , Reologia
15.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770834

RESUMO

This study focused on the reduction of the treatment cost of mature landfill leachate (LL) by enhancing the coagulation pre-treatment before a UVA-LED photo-Fenton process. A more efficient advanced coagulation pretreatment was designed by combining conventional coagulation (CC) and electro-coagulation (EC). Regardless of the order in which the two coagulations were applied, the combination achieved more than 73% color removal, 80% COD removal, and 27% SUVA removal. However, the coagulation order had a great influence on both final pH and total dissolved iron, which were key parameters for the UVA-LED photo-Fenton post-treatment. CC (pH = 5; 2 g L-1 of FeCl36H2O) followed by EC (pH = 5; 10 mA cm-2) resulted in a pH of 6.4 and 100 mg L-1 of dissolved iron, whereas EC (pH = 4; 10 mA cm-2) followed by CC (pH = 6; 1 g L-1 FeCl36H2O) led to a final pH of 3.4 and 210 mg L-1 dissolved iron. This last combination was therefore considered better for the posterior photo-Fenton treatment. Results at the best cost-efficient [H2O2]:COD ratio of 1.063 showed a high treatment efficiency, namely the removal of 99% of the color, 89% of the COD, and 60% of the SUVA. Conductivity was reduced by 17%, and biodegradability increased to BOD5:COD = 0.40. With this proposed treatment, a final COD of only 453 mg O2 L-1 was obtained at a treatment cost of EUR 3.42 kg COD-1.

16.
Int J Biol Macromol ; 187: 789-799, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34352317

RESUMO

The transition of nanocellulose production from laboratory to industrial scale requires robust monitoring systems that keeps a quality control along the production chain. The present work aims at providing a deeper insight on the main factors affecting the rheological behavior of (ligno)cellulose micro/nanofibers (LCMNFs) and cellulose micro/nanofibers (CMNFs) and how they could correlate with their characteristics. To this end, 20 types of LCMNFs and CMNFs were produced combining mechanical refining and high-pressure homogenization from different raw materials. Aspect ratio and bending capacity of the fibrils played a key role on increasing the viscosity of the suspensions by instigating the formation of entangled structures. Surface charge, reflected by the cationic demand, played opposing effects on the viscosity by reducing the fibrils' contact due to repulsive forces. The suspensions also showed increasing shear-thinning behavior with fibrillation degree, which was attributed to increased surface charge and higher water retention capacity, enabling the fibrils to slide past each other more easily when subjected to flow conditions. The present work elucidates the existing relationships between LCMNF/CMNF properties and their rheological behavior, considering fibrillation intensity and the initial raw material characteristics, in view of the potential of rheological measurements as an industrial scalable characterization technology.


Assuntos
Celulose/química , Lignanas/química , Nanofibras , Picea/química , Pinus/química , Celulose/isolamento & purificação , Lignanas/isolamento & purificação , Reologia , Especificidade da Espécie , Propriedades de Superfície , Viscosidade , Água/química
17.
Materials (Basel) ; 14(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063155

RESUMO

Reinforcing fibers have been widely used to improve physical and mechanical properties of cement-based materials. Most fiber reinforced composites (FRC) involve the use of a single type of fiber to improve cement properties, such as strength or ductility. To additionally improve other parameters, hybridization is required. Another key challenge, in the construction industry, is the implementation of green and sustainable strategies based on reducing raw materials consumption, designing novel structures with enhanced properties and low weight, and developing low environmental impact processes. Different recycled fibers have been used as raw materials to promote circular economy processes and new business opportunities in the cement-based sector. The valuable use of recycled fibers in hybrid FRC has already been proven and they improve both product quality and sustainability, but the generated knowledge is fragmented. This is the first review analyzing the use of recycled fibers in hybrid FRC and the hybridization effect on mechanical properties and workability of FRC. The paper compiles the best results and the optimal combinations of recycled fibers for hybrid FRC to identify key insights and gaps that may define future research to open new application fields for recycled hybrid FRC.

18.
Int J Biol Macromol ; 178: 325-343, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652051

RESUMO

Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.


Assuntos
Antibacterianos , Plásticos Biodegradáveis , Osso e Ossos/metabolismo , Quitosana , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/uso terapêutico , Quitosana/química , Quitosana/uso terapêutico , Humanos
19.
Environ Sci Pollut Res Int ; 28(13): 16517-16531, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389580

RESUMO

The greatest challenge the world is facing today is to win the battle against COVID-19 pandemic as soon as possible. Until a vaccine is available, personal protection, social distancing, and disinfection are the main tools against SARS-CoV-2. Although it is quite infectious, the SARS-CoV-2 virus itself is an enveloped virus that is relatively fragile because its protective fatty layer is sensitive to heat, ultraviolet radiation, and certain chemicals. However, heat and liquid treatments can damage some materials, and ultraviolet light is not efficient in shaded areas, so other disinfection alternatives are required to allow safe re-utilization of materials and spaces. As of this writing, evidences are still accumulating for the use of ozone gas as a disinfectant for sanitary materials and ambient disinfection in indoor areas. This paper reviews the most relevant results of virus disinfection by the application of gaseous ozone. The review covers disinfection treatments of both air and surfaces carried out in different volumes, which varies from small boxes and controlled chambers to larger rooms, as a base to develop future ozone protocols against COVID-19. Published papers have been critically analyzed to evaluate trends in the required ozone dosages, as a function of relative humidity (RH), contact time, and viral strains. The data have been classified depending on the disinfection objective and the volume and type of the experimental set-up. Based on these data, conservative dosages and times to inactivate the SARS-CoV-2 are estimated. In small chambers, 10-20 mg ozone/m3 over 10 to 50 min can be sufficient to significantly reduce the virus load of personal protection equipment. In large rooms, 30 to 50 mg ozone/m3 would be required for treatments of 20-30 min. Maximum antiviral activity of ozone is achieved at high humidity, while the same ozone concentrations under low RH could result inefficient. At these ozone levels, safety protocols must be strictly followed. These data can be used for reducing significantly the viral load although for assuring a safe disinfection, the effective dosages under different conditions need to be confirmed with experimental data.


Assuntos
COVID-19 , Ozônio , Desinfecção , Humanos , Pandemias , SARS-CoV-2 , Raios Ultravioleta
20.
Carbohydr Polym ; 254: 117271, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357852

RESUMO

Dispersion of cellulose nanocrystals (CNCs) is of utmost importance to guarantee their reliable application. Nevertheless, there is still no consensual method to characterize CNC aggregation. The hypothesis of this paper is that dispersion could be quantified through the classification of aggregates detected in transmission electron microscopy images. k-Means was used to classify image particulate elements of five CNC samples into groups according to their geometric features. Particles were classified into five groups according to their maximum Feret diameter, elongation, circularity and area. Two groups encompassed the most application-critical aggregates: one integrated aggregates of high complexity and low compactness while the other included elongated aggregates. In addition, the characterization of CNC dispersion after different levels of sonication was achieved by assessing the change in the number of elements belonging to each cluster after sonication. This approach could be used as a standard for the characterization of the aggregation state of CNCs.


Assuntos
Celulose/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Materiais Biocompatíveis/química , Celulose/classificação , Fractais , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Nanopartículas/classificação , Tamanho da Partícula , Sonicação , Aprendizado de Máquina não Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...