Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947671

RESUMO

The development of the new generation of non-volatile high-density ferroelectric memory requires the utilization of ultrathin ferroelectric films. The most promising candidates are polycrystalline-doped HfO2 films because of their perfect compatibility with silicon technology and excellent ferroelectric properties. However, the remanent polarization of HfO2 films is known to degrade when their thickness is reduced to a few nanometers. One of the reasons for this phenomenon is the wake-up effect, which is more pronounced in the thinner the film. For the ultrathin HfO2 films, it can be so long-lasting that degradation occurs even before the wake-up procedure is completed. In this work, an approach to suppress the wake-up in ultrathin Hf0.5Zr0.5O2 films is elucidated. By engineering internal built-in fields in an as-prepared structure, a stable ferroelectricity without a wake-up effect is induced in 4.5 nm thick Hf0.5Zr0.5O2 film. By analysis of the functional characteristics of ferroelectric structures with a different pattern of internal built-in fields and their comparison with the results of in situ piezoresponse force microscopy and synchrotron X-ray micro-diffraction, the important role of built-in fields in ferroelectricity of ultrathin Hf0.5Zr0.5O2 films as well as the origin of stable ferroelectric properties is revealed.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564195

RESUMO

Ferroelectric hafnium oxide thin films-the most promising materials in microelectronics' non-volatile memory-exhibit both unconventional ferroelectricity and unconventional piezoelectricity. Their exact origin remains controversial, and the relationship between ferroelectric and piezoelectric properties remains unclear. We introduce a new method to investigate this issue, which consists in a local controlled modification of the ferroelectric and piezoelectric properties within a single Hf0.5Zr0.5O2 capacitor device through local doping and a further comparative nanoscopic analysis of the modified regions. By comparing the ferroelectric properties of Ga-doped Hf0.5Zr0.5O2 thin films with the results of piezoresponse force microscopy and their simulation, as well as with the results of in situ synchrotron X-ray microdiffractometry, we demonstrate that, depending on the doping concentration, ferroelectric Hf0.5Zr0.5O2 has either a negative or a positive longitudinal piezoelectric coefficient, and its maximal value is -0.3 pm/V. This is several hundreds or thousands of times less than those of classical ferroelectrics. These changes in piezoelectric properties are accompanied by either improved or decreased remnant polarization, as well as partial or complete domain switching. We conclude that various ferroelectric and piezoelectric properties, and the relationships between them, can be designed for Hf0.5Zr0.5O2 via oxygen vacancies and mechanical-strain engineering, e.g., by doping ferroelectric films.

3.
Nanoscale ; 13(27): 11635-11678, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34190282

RESUMO

The discovery of ferroelectricity in polycrystalline thin films of doped HfO2 has reignited the expectations of developing competitive ferroelectric non-volatile memory devices. To date, it is widely accepted that the performance of HfO2-based ferroelectric devices during their life cycle is critically dependent on the presence of point defects as well as structural phase polymorphism, which mainly originates from defects either. The purpose of this review article is to overview the impact of defects in ferroelectric HfO2 on its functional properties and the resulting performance of memory devices. Starting from the brief summary of defects in classical perovskite ferroelectrics, we then introduce the known types of point defects in dielectric HfO2 thin films. Further, we discuss main analytical techniques used to characterize the concentration and distribution of defects in doped ferroelectric HfO2 thin films as well as at their interfaces with electrodes. The main part of the review is devoted to the recent experimental studies reporting the impact of defects in ferroelectric HfO2 structures on the performance of different memory devices. We end up with the summary and perspectives of HfO2-based ferroelectric competitive non-volatile memory devices.

4.
Microsc Microanal ; 27(2): 326-336, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33750509

RESUMO

New interest in microscopic studies of ferroelectric materials with low piezoelectric coefficient, $d_{33}^\ast$, has emerged after the discovery of ferroelectric properties in HfO2 thin films, which are the main candidate for the next generation of nonvolatile ferroelectric memory. The study of the microscopic structure of ferroelectric HfO2 capacitors is crucial to get insights into the device behavior and performance. However, a small $d_{33}^\ast$ of ferroelectric HfO2 films leads to a low piezoresponse, especially in band excitation piezoresponse force microscopy (BE-PFM). In this work, we have implemented the BE-PFM technique with an increased scanning rate, thus improving this versatile tool for weak ferroelectrics. The acceleration of measurement was achieved by focusing excitation into a narrow frequency band and tuning the central frequency on-the-fly using an online real-time model estimation by fitting a complex BE response. The tracking of the contact resonance frequency was implemented using a pure mechanical cantilever response acquired in BE atomic force acoustic microscopy. To obtain optimal excitation parameters, we perform statistical analysis by minimizing estimator variance. The measurement precision of several PFM techniques was compared both by the simulation and experimentally using a Hf0.5Zr0.5O2-based ferroelectric capacitor.

5.
ACS Appl Mater Interfaces ; 12(50): 56195-56202, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33258603

RESUMO

New opportunities in the development and commercialization of novel photonic and electronic devices can be opened following the development of technology-compatible arbitrary-shaped ferroelectrics encapsulated in a passive environment. Here, we report and experimentally demonstrate nanoscale tailoring of ferroelectricity by an arbitrary pattern within the nonferroelectric thin film. For inducing the ferroelectric nanoregions in the nonferroelectric surrounding, we developed a technology-compatible approach of local doping of a thin (10 nm) HfO2 film by Ga ions right in the thin-film capacitor device via focused ion beam implantation. Local crystallization of the doped regions to the ferroelectric structural phase occurs during subsequent annealing. The remnant polarization of the HfO2:Ga regions reached 13 µC/cm2 at a Ga concentration of 0.6 at. %. Piezoresponse force microscopy over the capacitor device revealed an asymmetrical switching of ferroelectric domains within written HfO2:Ga patterns after capacitor switching, which was attributed to the mechanical stress across the doped film. The lateral spatial resolution of ferroelectricity tailoring is found to be ∼200 nm, which enables diverse applications in switchable photonics and microelectronic memories.

6.
ACS Appl Mater Interfaces ; 11(35): 32108-32114, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31402643

RESUMO

While the conductance of a first-order memristor is defined entirely by the external stimuli, in the second-order memristor it is governed by the both the external stimuli and its instant internal state. As a result, the dynamics of such devices allows to naturally emulate the temporal behavior of biological synapses, which encodes the spike timing information in synaptic weights. Here, we demonstrate a new type of second-order memristor functionality in the ferroelectric HfO2-based tunnel junction on silicon. The continuous change of conductance in the p+-Si/Hf0.5Zr0.5O2/TiN tunnel junction is achieved via the gradual switching of polarization in ferroelectric domains of polycrystalline Hf0.5Zr0.5O2 layer, whereas the combined dynamics of the built-in electric field and charge trapping/detrapping at the defect states at the bottom Si interface defines the temporal behavior of the memristor device, similar to synapses in biological systems. The implemented ferroelectric second-order memristor exhibits various synaptic functionalities, such as paired-pulse potentiation/depression and spike-rate-dependent plasticity, and can serve as a building block for the development of neuromorphic computing architectures.

7.
ACS Appl Mater Interfaces ; 10(10): 8818-8826, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29464951

RESUMO

Because of their full compatibility with the modern Si-based technology, the HfO2-based ferroelectric films have recently emerged as viable candidates for application in nonvolatile memory devices. However, despite significant efforts, the mechanism of the polarization switching in this material is still under debate. In this work, we elucidate the microscopic nature of the polarization switching process in functional Hf0.5Zr0.5O2-based ferroelectric capacitors during its operation. In particular, the static domain structure and its switching dynamics following the application of the external electric field have been monitored with the advanced piezoresponse force microscopy (PFM) technique providing a nm resolution. Separate domains with strong built-in electric field have been found. Piezoresponse mapping of pristine Hf0.5Zr0.5O2 films revealed the mixture of polar phase grains and regions with low piezoresponse as well as the continuum of polarization orientations in the grains of polar orthorhombic phase. PFM data combined with the structural analysis of pristine versus trained film by plan-view transmission electron microscopy both speak in support of a monoclinic-to-orthorhombic phase transition in ferroelectric Hf0.5Zr0.5O2 layer during the wake-up process under an electrical stress.

8.
ACS Appl Mater Interfaces ; 8(11): 7232-7, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26931409

RESUMO

Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...