Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 908: 167-79, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10911957

RESUMO

Human aging is a complex process that leads to the gradual deterioration of body functions with time. Various models to approach the study of aging have been launched over the years such as the genetic analysis of life span in the yeast S. cerevisiae, the worm C. elegans, the fruitfly, and mouse, among others. In human models, there have been extensive efforts using replicative senescence, the study of centenerians, comparisons of young versus old at the organismal, cellular, and molecular levels, and the study of premature aging syndromes to understand the mechanisms leading to aging. One good model for studying human aging is a rare autosomal recessive disorder known as the Werner syndrome (WS), which is characterized by accelerated aging in vivo and in vitro. A genetic defect implicated in WS was mapped to the WRN locus. Mutations in this gene are believed to be associated, early in adulthood, with clinical symptoms normally found in old individuals. WRN functions as a DNA helicase, and recent evidence, summarized in this review, suggests specific biochemical roles for this multifaceted protein. The interaction of WRN protein with RPA (replication protein A) and p53 will undoubtedly direct efforts to further dissect the genetic pathway(s) in which WRN protein functions in DNA metabolism and will help to unravel its contribution to the human aging process.


Assuntos
Senilidade Prematura , DNA Helicases/fisiologia , Síndrome de Werner , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/fisiopatologia , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases , Previsões , Humanos , Camundongos , Modelos Biológicos , RecQ Helicases , Proteína de Replicação A , Frações Subcelulares , Proteína Supressora de Tumor p53/metabolismo , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Síndrome de Werner/fisiopatologia , Helicase da Síndrome de Werner
2.
Mol Biol Cell ; 10(8): 2655-68, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10436020

RESUMO

Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)-dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40-60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II-dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid-protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , RNA Polimerase II/genética , Transcrição Gênica , Sequência de Aminoácidos , Extratos Celulares , Linhagem Celular , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Cromatina/genética , DNA Helicases/isolamento & purificação , Exodesoxirribonucleases , Imunofluorescência , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Mutação , Plasmídeos/genética , RNA/biossíntese , RecQ Helicases , Sequências Repetitivas de Aminoácidos , Síndrome de Werner/genética , Síndrome de Werner/patologia , Helicase da Síndrome de Werner
3.
Nucleic Acids Res ; 27(17): 3557-66, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10446247

RESUMO

Mutations in the WRN gene result in Werner syndrome, an autosomal recessive disease in which many characteristics of aging are accelerated. A probable role in some aspect of DNA metabolism is suggested by the primary sequence of the WRN gene product. A recombinant His-tagged WRN protein (WRNp) was overproduced in insect cells using the baculovirus system and purified to near homogeneity by several chromatographic steps. This purification scheme removes both nuclease and topoisomerase contaminants that persist following a single Ni(2+)affinity chromatography step and allows for unambiguous interpretation of WRNp enzymatic activities on DNA substrates. Purified WRNp has DNA-dependent ATPase and helicase activities consistent with its homology to the RecQ subfamily of proteins. The protein also binds with higher affinity to single-stranded DNA than to double-stranded DNA. However, WRNp has no higher affinity for various types of DNA damage, including adducts formed during 4NQO treatment, than for undamaged DNA. Our results confirm that WRNp has a role in DNA metabolism, although this role does not appear to be the specific recognition of damage in DNA.


Assuntos
4-Nitroquinolina-1-Óxido/farmacologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Baculoviridae/genética , DNA Helicases/química , DNA Complementar/análise , Exodesoxirribonucleases , Humanos , Hidrólise , Cinética , RecQ Helicases , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Helicase da Síndrome de Werner
5.
Biochem Biophys Res Commun ; 231(3): 628-34, 1997 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-9070860

RESUMO

The helix-loop-helix protein Id-1 regulates growth and differentiation in many mammalian cells. In human fibroblasts, Id1 and Id1', a putative splicing variant, are cell cycle regulated, essential for proliferation, repressed by senescence, and overexpressed by some tumor cells. To better understand Id1, we determined the complete sequence, transcriptional start, and localization of the human Id1 gene. Human Id1 has two exons (426 bp and 42 bp), separated by an intron (239 bp). Id1' results from failure to splice the intron, which encodes 7 amino acids prior to a stop codon. Thus, Id1 and Id1' proteins differ only at the extreme C-terminus. Id1 transcription initiated 96 bp upstream of the initiation AUG; 2 kb of upstream sequence stimulated transcription of a reporter gene. Human Id1 maps to chromosome 20 at q11, very close to the centromere but outside the amplicons frequently found in human cancers.


Assuntos
Proteínas Repressoras , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Cromossomos , Genes , Sequências Hélice-Alça-Hélice , Humanos , Hibridização in Situ Fluorescente , Proteína 1 Inibidora de Diferenciação , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Mapeamento por Restrição , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Dev Genet ; 18(2): 161-72, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8934878

RESUMO

Normal somatic cells of higher organisms do not divide indefinitely. After a finite number of divisions, normal cells irreversibly cease proliferation by a process termed replicative or cellular senescence. Replicative senescence is controlled by multiple, dominant-acting genes about which very little is known. The only genes known to reactivate DNA synthesis in senescent cells are viral oncogenes encoding proteins that bind and inactivate the p53 and retinoblastoma (pRb) tumor suppressor proteins. SV40 T antigen is the best studied of these viral oncoproteins. T[K1] is a T antigen point mutant that selectively is defective in binding pRb and the pRb-related proteins p107 and p130. We show that T[K1] stimulated quiescent human fibroblasts to synthesize DNA nearly as well as wild-type T but was incapable of stimulating senescent cells. We tested several growth regulatory genes that are repressed in senescent cells for ability to restore activity to T[K1]. These included c-fos, c-jun, Id-1, Id-2, E2F-1, and cdc2. Only the helix-loop-helix (HLH) protein, Id-1, restored the ability of T[K1] to reactivate DNA synthesis in senescent cells. This activity of Id-1 was not shared by Id-2, a related protein, and depended on an intact HLH domain. It did not appear that Id-1 interacted directly with pRb or p107. Constitutive Id-1 expression failed to rescue proliferating cells from growth inhibition by pRb, p107, or p130, and failed to interact with pRb in the yeast two hybrid system. Because Id proteins negatively regulate basic-HLH (bHLH) transcription factors, we suggest that senescent cells express one or more bHLH factor that cooperates with pRb, or pRb-related proteins, to suppress proliferation.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , DNA/biossíntese , Fibroblastos/fisiologia , Proteínas Repressoras , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Divisão Celular , Linhagem Celular , Senescência Celular , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fibroblastos/citologia , Sequências Hélice-Alça-Hélice , Humanos , Proteína 1 Inibidora de Diferenciação , Mutação , Proteína 1 de Ligação ao Retinoblastoma , Fator de Transcrição DP1
8.
Exp Gerontol ; 31(1-2): 7-12, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8706807

RESUMO

Replicative senescence is a fundamental feature of most, if not all, somatic higher eukaryotic cells. The phenomenon has been studied for more than three decades, during which time the genetics and cell biology of senescent cells were characterized. In recent years, progress has been made on understanding the molecular basis for replicative senescence. At present, we now have a good, albeit still incomplete, understanding of some of the immediate causes for the growth arrest of senescent cells. The challenges for the future will be to understand the molecular bases for the prime causes of senescent phenotype, including the growth arrest and the altered differentiation.


Assuntos
Senescência Celular , Animais , Divisão Celular , Células Cultivadas , Genes Reguladores , Humanos , Fenótipo , Proto-Oncogenes
9.
Curr Genet ; 28(3): 258-66, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8529272

RESUMO

Glucose repression is a global regulatory system in Saccharomyces cerevisiae controlling carbon-source utilization, mitochondrial biogenesis, gluconeogenesis and other metabolic pathways. Mig1p, a zinc-finger class of DNA-binding protein, is a transcriptional repressor regulating GAL and SUC gene expression in response to glucose. This report demonstrates that Mig1 protein represses transcription of the MAL61 and MAL62 structural genes and also the MAL63 gene, which encodes the Mal-activator. Mig1p DNA-binding sites were identified upstream of all three MAL genes. Both of the Mig1p-binding sites found in the bidirectional MAL61-MAL62 promoter were shown to function in the Mig1p-dependent glucose repression. Studies using constitutive Mal-activator alleles suggest that glucose regulation of inducer availability is a second major contributing factor in glucose repression of MAL gene expression and is even stronger than the Mig1p-dependent component of repression. Moreover, our results also suggest the contribution of other minor mechanisms in glucose regulation of MAL gene expression.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Maltose/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Transporte de Monossacarídeos , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Simportadores , Transativadores/biossíntese , alfa-Glucosidases/biossíntese , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/biossíntese , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transativadores/genética , alfa-Glucosidases/genética
10.
Biochem Biophys Res Commun ; 210(1): 165-73, 1995 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-7741738

RESUMO

The PDGF beta-receptor expression is tightly regulated during embryonic development and in several physiological and pathological situations. To determine the regulatory mechanism of the receptor, a 1.9 kb 5' flanking genomic fragment of the mouse PDGF beta-receptor gene was cloned and analyzed by functional promoter assays. The fragment was shown to exert promoter activity in the luciferase expression vector system in mouse NIH 3T3 fibroblast and NB41 neuroblastoma cell lines as well as rat ST15A cerebellar cell lines. Functional studies on deletion mutants revealed several putative regulatory sequences. The deletion mutants acted similarly in NB41 cells and in ST15A cells, both of neuronal origin, but differently in the NIH 3T3 fibroblasts. No TATA box was found in the analyzed promoter region, however, site directed mutagenesis of a CCAAT motif, located 60 basepair upstream of the transcriptional start site, almost completely abolished the promoter activity in all cell types.


Assuntos
Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Animais , Sequência de Bases , Sítios de Ligação , Primers do DNA/química , Regulação da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Deleção de Sequência , Transcrição Gênica
11.
Mol Cell Biol ; 14(3): 1979-85, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8114729

RESUMO

MIG1 is a zinc finger protein that mediates glucose repression in the yeast Saccharomyces cerevisiae. MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins. It has two fingers and binds to a GCGGGG motif that resembles the GC boxes recognized by these mammalian proteins. We have performed a complete saturation mutagenesis of a natural MIG1 site in order to elucidate its binding specificity. We found that only three mutations within the GC box retain the ability to bind MIG1: G1 to C, C2 to T, and G5 to A. This result is consistent with current models for zinc finger-DNA binding, which assume that the sequence specificity is determined by base triplet recognition within the GC box. Surprisingly, we found that an AT-rich region 5' to the GC box also is important for MIG1 binding. This AT box is present in all natural MIG1 sites, and it is protected by MIG1 in DNase I footprints. However, the AT box differs from the GC box in that no single base within it is essential for binding. Instead, the AT-rich nature of this sequence seems to be crucial. The fact that AT-rich sequences are known to increase DNA flexibility prompted us to test whether MIG1 bends DNA. We found that binding of MIG1 is associated with bending within the AT box. We conclude that DNA binding by a simple zinc finger protein such as MIG1 can involve both recognition of the GC box and flanking sequence preferences that may reflect local DNA bendability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras , Sequência de Aminoácidos , Composição de Bases , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Deleção de Sequência , Relação Estrutura-Atividade , Dedos de Zinco
12.
Nucleic Acids Res ; 20(20): 5271-8, 1992 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-1437546

RESUMO

We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Fúngicos/genética , Zíper de Leucina/genética , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica , Sítios de Ligação/genética , Northern Blotting , Clonagem Molecular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Ligação G-Box , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Glucose/farmacologia , Glucosiltransferases/genética , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética
13.
EMBO J ; 10(11): 3373-7, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1915298

RESUMO

Glucose repression is a global regulatory mechanism in yeast. We have investigated how glucose regulates the GAL genes, which are required for galactose fermentation. We found that the GAL genes are controlled by a transcriptional cascade. Thus, GAL4, which encodes an activator of the GAL genes, is repressed by MIG1, a zinc finger protein that binds to the GAL4 promoter. MIG1 has a dual role in control of the GAL genes, since MIG1 also binds to the promoter of GAL1, a gene regulated by GAL4. A disruption of MIG1 interacts synergistically with a disruption of GAL80, a gene involved in galactose induction. This suggests that the MIG1-dependent response to glucose is amplified by down-regulation of the induction pathway.


Assuntos
Galactose/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Supressores , Saccharomyces cerevisiae/genética , Transcrição Gênica , Dedos de Zinco/efeitos dos fármacos , Sequência de Bases , Northern Blotting , Impressões Digitais de DNA , Regulação para Baixo , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas , RNA Fúngico/análise , Dedos de Zinco/genética
14.
Mol Cell Biol ; 11(10): 4876-84, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1656215

RESUMO

We have cloned three genes for protein phosphatases in the yeast Saccharomyces cerevisiae. Two of the genes, PPH21 and PPH22, encode highly similar proteins that are homologs of the mammalian protein phosphatase 2A (PP2A), while the third gene, PPH3, encodes a new PP2A-related protein. Disruptions of either PPH21 or PPH22 had no effects, but spores disrupted for both genes produced very small colonies with few surviving cells. We conclude that PP2A performs an important function in yeast cells. A disruption of the third gene, PPH3, did not in itself affect growth, but it completely prevented growth of spores disrupted for both PPH21 and PPH22. Thus, PPH3 provides some PP2A-complementing activity which allows for a limited growth of PP2A-deficient cells. Strains were constructed in which we could study the phenotypes caused by either excess PP2A or total PP2A depletion. We found that the level of PP2A activity has dramatic effects on cell shape. PP2A-depleted cells develop an abnormal pear-shaped morphology which is particularly pronounced in the growing bud. In contrast, overexpression of PP2A produces more elongated cells, and high-level overexpression causes a balloonlike phenotype with huge swollen cells filled by large vacuoles.


Assuntos
Expressão Gênica/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Evolução Biológica , Clonagem Molecular , Análise Mutacional de DNA , Dados de Sequência Molecular , Morfogênese , Fenótipo , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2 , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência
15.
EMBO J ; 9(9): 2891-8, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2167835

RESUMO

We have cloned a yeast gene, MIG1, which encodes a C2H2 zinc finger protein involved in glucose repression. The fingers of MIG1 are very similar to those present in the mammalian Egr finger proteins, which are induced during the early growth response, and also to the finger protein encoded by a human gene that is deleted in Wilms' tumour cells. MIG1 protein binds to two sites in the upstream region of SUC2, a yeast gene that is repressed by glucose. The MIG1 sites closely resemble the sequence recognized by the Egr proteins. Thus, finger proteins that are similar in both amino acid sequence and DNA specificity are involved in the response of yeast to glucose, and in the mammalian early growth response.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Glucose/farmacologia , Neoplasias Renais/genética , Metaloproteínas/genética , Saccharomyces cerevisiae/genética , Tumor de Wilms/genética , Sequência de Aminoácidos , Sequência de Bases , Deleção Cromossômica , Genótipo , Humanos , Dados de Sequência Molecular , Biossíntese de Proteínas , Mapeamento por Restrição , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Zinco/metabolismo
16.
Gene ; 85(2): 313-9, 1989 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-2697639

RESUMO

We have cloned and sequenced the GAL2 gene of Saccharomyces cerevisiae, which encodes galactose permease. The GAL2 protein is related to the yeast glucose transporter encoded by the SNF3 gene, and also to mammalian and bacterial sugar permeases. Like the other members of this protein family, GAL2 has twelve hydrophobic segments that are separated by loops of charged amino acids. A comparison of different members of this protein family shows that those parts of the polypeptides thought to be on the cytoplasmic side of the cell membrane, are more conserved than other parts of the molecules.


Assuntos
Genes Fúngicos , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Genes , Humanos , Dados de Sequência Molecular , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...