Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 27(1): 155-166, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230251

RESUMO

Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.(AU)


Assuntos
Humanos , Escherichia coli/genética , Resistência a Múltiplos Medicamentos , Infecções Urinárias/microbiologia , Bacteriófagos , Antibacterianos , Infecções por Escherichia coli , Microbiologia , Técnicas Microbiológicas
2.
Int Microbiol ; 27(1): 155-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37247084

RESUMO

Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Bacteriófagos/genética , Escherichia , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia
3.
Expert Rev Respir Med ; 17(11): 1079-1089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058175

RESUMO

BACKGROUND: Diagnosis of pleural tuberculosis (TB) is tedious owing to its close resemblance with malignant pleural effusion and sparse bacterial load in clinical specimens. There is an immediate need to design a rapid and dependable diagnostic test to prevent unnecessary morbidity/mortality. RESEARCH DESIGN AND METHODS: A multi-targeted loop-mediated isothermal amplification (MT-LAMP) was deliberated using mpt64 and IS6110 to diagnose pleural TB within pleural fluids/biopsies. MT-LAMP products were analyzed by gel-based and visual detection methods, viz. SYBR Green I, SYBR Green I+deoxyuridine triphosphate uracil-N-glycosylase (dUTP-UNG), and dry methyl green reactions. RESULTS: In a pilot study, while assessing pleural TB/non-TB control subjects (n = 40), both SYBR Green I+dUTP-UNG/gel-based MT-LAMP assays exhibited better sensitivity/specificity than SYBR Green I and dry methyl green MT-LAMP. Since it is facile to work with SYBR Green I+dUTP-UNG than gel-based MT-LAMP, we validated the performance of SYBR Green I+dUTP-UNG in a higher number of specimens (n = 97), which revealed somewhat higher sensitivity (85.2 vs. 81.5%) and specificity (97.7 vs. 90.7%) than SYBR Green I MT-LAMP. Furthermore, the sensitivity attained by SYBR Green I+dUTP-UNG MT-LAMP was significantly higher (p < 0.001) than GeneXpert. CONCLUSIONS: Our SYBR Green I+dUTP-UNG MT-LAMP is a simple and reliable method to diagnose pleural TB, which may translate into a point-of-care test.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pleural , Humanos , Tuberculose Pleural/diagnóstico , Verde de Metila , Projetos Piloto , Sensibilidade e Especificidade , Mycobacterium tuberculosis/genética
4.
Data Brief ; 48: 109104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37089202

RESUMO

Two novel mycobacteriophages (Prann and LeoAvram) belonging to the family Siphoviridae were isolated from soil samples of Northern India. Genomic DNA of both the phages was extracted, and further sequenced using Illumina technology. Complete genome annotation of both the isolates was performed using DNA Master. Prann and LeoAvram had linear genomes of 68398bp and 47079bp, respectively, with G+C contents of 60-70%. A total of 99 and 75 ORFs were predicted in Prann and LeoAvram, respectively. Based on sequence similarity to known phage proteins, functions were assigned to 44 and 53 genes, respectively. These proteins could be classified into five major groups, viz., phage structural proteins, proteins for recombination, lytic enzymes, proteins involved in DNA / RNA metabolism, and in regulation. Mycobacterium smegmatis was used in this work as a safe surrogate for Mycobacterium tuberculosis, the causative agent for tuberculosis, a major infectious disease worldwide with developing antibiotic resistance. This is the first report of M. smegmatis phages from Northern India.

5.
Heliyon ; 8(10): e11080, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303898

RESUMO

The emerging era of antimicrobial resistance has become a challenge for the potentiality of current antibiotic therapy, making the treatment of several diseases, including urinary tract infections (UTIs) very chaotic. To combat the present circumstances, there is an urge among the scientific community to find efficient substitutes for antibiotic therapy, which may potentially delimit the antimicrobial resistance among the various uropathogens. In this direction, the upcoming field of nanotechnology holds a high potential. Therefore, the present study aimed at the evaluation of the antimicrobial potential of green synthesized zinc oxide nanoparticles. The nanoparticles were synthesized using Bryophyllum pinnatum plant leaf extract and were characterized with the help of several analytical techniques. A sharp peak obtained at 369 nm by UV-Visible spectroscopy affirmed the synthesis of Bryophyllum- ZnO nanoparticles, and the FTIR spectroscopy confirmed the conjugation of different phytochemicals. XRD analysis revealed the crystallinity and hexagonal conformation, and through SEM and HR-TEM, the particle size of the synthesized Bryophyllum- ZnO nanoparticles was found to be between 14-35 nm. The synthesized green nanoparticles, when tested against a few highly MDR uropathogenic bacteria (E. coli, E. furgusonii, K. pneumoniae, S. flexneri, and P. aeruginosa), were observed to exhibit high antimicrobial response (zones of inhibition ranging between 22 mm to 28 mm), thus confirming that these were bestowed with potent antimicrobial ability. Hence, from the present work, it could be concluded that Bryophyllum- ZnO nanoparticles can be used as potential nanoantibiotic sources to deal with UTIs.

6.
Expert Rev Respir Med ; 16(8): 887-906, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728039

RESUMO

INTRODUCTION: Pleural tuberculosis (TB) is the archetype of extrapulmonary TB (EPTB), which mainly affects the pleural space and leads to exudative pleural effusion. Diagnosis of pleural TB is a difficult task predominantly due to atypical clinical presentations and sparse bacillary load in clinical specimens. AREA COVERED: We reviewed the current literature on the globally existing conventional/latest modalities for diagnosing pleural TB. Bacteriological examination (smear/culture), tuberculin skin testing/interferon-γ release assays, biochemical testing, imaging and histopathological/cytological examination are the main modalities. Moreover, nucleic acid amplification tests (NAATs), i.e. loop-mediated isothermal amplification, PCR/multiplex-PCR, nested-PCR, real-time PCR and GeneXpert® MTB/RIF are being utilized. Currently, GeneXpert Ultra, Truenat MTBTM, detection of circulating Mycobacterium tuberculosis (Mtb) cell-free DNA by NAATs, aptamer-linked immobilized sorbent assay and immuno-PCR (I-PCR) have also been exploited. EXPERT OPINION: Routine tests are not adequate for effective pleural TB diagnosis. The latest molecular/immunological tests as discussed above, and the other tools, i.e. real-time I-PCR/nanoparticle-based I-PCR and identification of Mtb biomarkers within urinary/serum extracellular vesicles being utilized for pulmonary TB and other EPTB types may also be explored to diagnose pleural TB. Reliable diagnosis and early therapy would reduce the serious complications associated with pleural TB, i.e. TB empyema, pleural fibrosis, etc.


Assuntos
Ácidos Nucleicos Livres , Mycobacterium tuberculosis , Tuberculose Pleural , Ácidos Nucleicos Livres/farmacologia , Humanos , Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Tuberculina/farmacologia , Tuberculose Pleural/diagnóstico
7.
Curr Res Microb Sci ; 2: 100030, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841321

RESUMO

Antibiotic resistance is a massive problem rising constantly and spreading rapidly since the past decade. The major underlying mechanism responsible for this problem is an overuse or severe misuse of antibiotics. Regardless of this emerging global threat, antibiotics are still being widely used, not only for treatment of human infections, but also to a great extent in agriculture, livestock and animal husbandry. If the current scenario persists, we might enter into a post-antibiotic era where drugs might not be able to treat even the simplest of infections. This review discusses the current status of antibiotic utilization and molecular basis of antibiotic resistance mechanisms acquired by bacteria, along with the modes of transmittance of the resultant resistant genes into human pathogens through their cycling among different ecosystems. The main focus of the article is to provide an insight into the different molecular and other strategies currently being studied worldwide for their use as an alternate to antibiotics with an overall aim to overcome or minimize the global problem of antibiotic resistance.

8.
Data Brief ; 38: 107311, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34485641

RESUMO

Klebsiella aerogenes, is a Gram-negative bacterium, which was previously known as Enterobacter aerogenes. It is present in all environments such as water, soil, air and hospitals; and is an opportunistic pathogen that causes several types of infections. As compared to other clinically important pathogens included in the ESKAPE category (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), the pangenome and population structure of Klebsiella aerogenes is still poorly understood. For the present study, the bacterial sample was isolated from agricultural soils of Haryana, India. With an aim to identify the occurrence of multi-drug resistance genes in the agricultural field soil bacterial isolate, whole genome sequencing (WGS) of the bacteria was performed; and the antibiotic resistance causing genes, along with the genes responsible for other major functions of the cell; and the different Single Nuceotide Polymorphisms (SNPs) and Insertions and deletions (InDels) were identified. The data presented in this manuscript can be reused by researchers as a reference for determining the antibiotic resistance genes that could be present in different bacterial isolates, and it would also help in determination of functions of various other genes present in other genomes of Klebsiella species.

9.
Virus Res ; 302: 198496, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182014

RESUMO

Infections related to antibiotic resistant bacteria are accelerating on a global scale, and hence to encounter this problem in case of urinary tract infections; bacteriophages were isolated for biocontrol of multi-drug resistant (MDR) uropathogenic Escherichia coli (UPECs) isolates. Four lytic phages were purified, characterized, and evaluated for their effectiveness in the form of cocktail and in synergy with antibiotics. Morphological features and other life cycle specifications of phages revealed that two phages Escherichia phage FS11 and Escherichia phage FS17 belonged to Myoviridae and the other two phages Escherichia phage PS8 and Escherichia phage PS6 belonged to Siphoviridae family of order Caudovirales. One step growth curve analysis demonstrated that phage FS11 and phage FS17 had latent time of 24 min and 26 min, and a burst size of ~121 and 98 phage particles/ cell respectively; while for phage PS8 and phage PS6, the latent time was 42 min and 35 min, and the burst size was 87 and 78 particles/ cell, respectively; depicting the lytic nature of phages. The use of all four phages together in the form of a cocktail resulted into a considerable enhancement in the lytic ability; the phage cocktail lysed 86.7% of the clinical isolates, compared to lysis in the range of 50%-66% by individual phages. Studies on in vitro evaluation of phage-antibiotic combinations revealed synergism between antibiotics and the phage cocktail (phage PS6 and phage FS17), wherein the phage cocktail was observed to efficiently inhibit the strains in the presence of sub-lethal doses of antibiotics. The study thus concludes that the use of multiple phages and phage-antibiotic combinations could prove beneficial in the era of rapidly increasing drug-resistant strains.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções Urinárias , Escherichia coli Uropatogênica , Antibacterianos/farmacologia , Humanos , Terapia por Fagos/métodos , Infecções Urinárias/microbiologia , Infecções Urinárias/terapia
10.
Environ Monit Assess ; 193(4): 234, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772669

RESUMO

The present investigation focused on groundwater hydro-geochemistry of Alsisar block of Jhunjhunu district, India, aims on evaluating the quality of groundwater for drinking and irrigation purposes and assessing the human health risk from ingestion of groundwater. The groundwater of Alsisar block is neutral to alkaline, brackish and very hard in nature. Total dissolved solids, total hardness, Na+, Mg2+, HCO3-, F- and NO3- in majority of the groundwater samples were exceeding the World Health Organization and Bureau of Indian Standards recommended limits. The drinking water quality index ranged from 111.53 to 492.84. None of the sample belonged to excellent and good categories of drinking water quality. Fluoride varied from 0.018 to 4.176 mg L-1, and nitrate varied from 0.34 to 520.66 mg L-1 in groundwater. The non-carcinogenic risk assessment for children, men and women owing to ingestion of fluoride and nitrate-enriched groundwater indicates human health risks in the entire study area. Irrigation with groundwater of Alsisar block is liable to cause salinity and magnesium hazard to agricultural crops grown in the area. Source apportionment using principal component analysis suggests the geogenic origin of fluoride and anthropogenic origin of nitrate. Na+-Mg2+-Cl- followed by Na+-Mg2+-HCO3- are the predominant hydrochemical facies in the groundwater of Alsisar block. Silicate rock weathering, ion exchange and evaporation are the predominating processes governing ionic concentrations in the groundwater. Biochemical and molecular tests demonstrated the presence of Brevibacillus borstelensis strain DSM 6347 16s rRNA and Bacillus paramycoides strain MCCC 1A04098 16s rRNA in the groundwater of the area.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Bacillus , Brevibacillus , Criança , Monitoramento Ambiental , Feminino , Humanos , Índia , Masculino , RNA Ribossômico 16S , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
11.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855246

RESUMO

The complete genome sequence of the unique virulent bacteriophage BRock, isolated from compost on Streptomyces sp. strain SFB5A, was determined. BRock is a myovirus with a 112,523-bp genome containing a GC content of 52.3%. There were 188 protein-coding genes predicted, including structural and enzymatic proteins, but none predicted for lysogeny. Twenty-nine tRNAs were predicted.

12.
IET Nanobiotechnol ; 14(3): 245-252, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32338634

RESUMO

Bacteriocins produced by lactic acid bacteria are safer alternatives to the more popularly used chemical preservatives which exhibit several adverse effects. The bacteriocins have an advantage of being efficient in controlling food pathogens without possessing any side-effects. However, the bacteriocins have a limitation of exhibiting a narrow antimicrobial spectrum and having a high-dosage requirement. With an aim to combat these limitations, the present study involved the biosynthesis of bacteriocin-capped nanoparticles, using two bacteriocins (Bac4463 and Bac22) extracted and purified from Lactobacillus strains. Nanoconjugates synthesised at optimum conditions were characterized using various physico-chemical techniques. The interaction of bacteriocin-capped silver nanoparticles with the pathogenic bacteria was observed using scanning electron microscopy, wherein the deformed and elongated cells were clearly visible. In vitro antimicrobial efficacy of both Bac4463-capped silver nanoparticles and Bac22-capped silver nanoparticles against different food pathogens was observed to be enhanced in comparison to the antimicrobial activity of bacteriocins alone. Minimum inhibitory concentration was observed to be as low as 8 µg/ml for Bac4463-capped silver nanoparticles against Staphylococcus aureus, and 2 µg/ml for Bac22-capped silver nanoparticles against Shigella flexneri. This study, therefore, recommends the use of bacteriocin-capped nanoparticles as food preservatives to control the growth of food spoiling bacteria.


Assuntos
Antibacterianos , Bacteriocinas , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bacteriocinas/química , Bacteriocinas/farmacologia , Testes de Sensibilidade Microbiana
13.
Folia Microbiol (Praha) ; 65(2): 217-231, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31494814

RESUMO

Upsurge in the instances of antibiotic-resistant uropathogenic Escherichia .coli (UPECs) strains has repositioned the attention of researchers towards a century old antimicrobial approach popularly known as phage therapy. Rise of extended spectrum beta lactamase (ESBL) and biofilm producing strains has added another step of hurdle in treatment of uropathogens with conventional antibiotics, thus providing a further impetus for search for exploring new therapeutic measures. In this direction, bacteriophages, commonly called phages, are recently being considered as potential alternatives for treatment of UPECs. Phages are the tiniest form of viruses which are ubiquitous in nature and highly specific for their host. This review discusses the possible ways of using natural phages, genetically engineered phages, and phage lytic enzymes (PLEs) as an alternative antimicrobial treatment for urinary tract infections. The review also sheds light on the synergistic use of conventional antibiotics with phages or PLEs for treatment of uropathogens. These methods of using phages and their derivatives, alone or in combination with antibiotics, have proved fruitful so far in in vitro studies. However, in vivo studies are required to make them accessible for human use. The present review is a concerted effort towards putting together all the information available on the subject.


Assuntos
Bacteriófagos/fisiologia , Infecções por Escherichia coli/terapia , Terapia por Fagos , Infecções Urinárias/terapia , Escherichia coli Uropatogênica/virologia , Animais , Bacteriófagos/genética , Infecções por Escherichia coli/microbiologia , Humanos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/fisiologia
14.
Anticancer Agents Med Chem ; 18(5): 739-746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29256358

RESUMO

BACKGROUND: After the discovery of cisplatin, first non platinum anticancer drugs having excellent efficacy were budotitane and TiCl2(cp)2 but action mechanism is not clear. Therefore, we hereby reporting synthesis and biological activities novel titanium complexes to explore their mode of action. OBJECTIVES: Synthesis, spectral characterization, antibacterial and anticancer activity of some titanium complexes. Antibacterial studies on various bacterial strains and anticancer studies on HeLa, C6, CHO cancerous cell lines have been performed. Further, the cell death mechanistic study was done on CHO cell lines. METHOD: Titanium complexes with and without labile groups have been synthesized by reacting of TiCl4 with nitrogen containing ligands viz. 1,2-diaminocyclohexane, 1,10-Phenanthroline, adamantylamine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine in predetermined molar ratios. Antibacterial and anticancer studies were performed by agar well diffusion method and MTT assay respectively. Cell cycle analysis is done by using flow cytometry. RESULTS: Complex 2 i.e TiCl2(Phen)2 showed better activity than other complexes as an antibacterial as well as anticancer agent. Phase contrast imaging indicates that observed morphological changes of cells was dose dependent. Cell death mechanistic study have shown the increase in sub G0 phase population as well as formation of blebbing and fragmentation of chromatin material which is an indicative measure of apoptosis. CONCLUSION: Complex 2 proved to be more effective bactericide and cytotoxic agent. Cell cycle analysis showed cell arrest in G0 phase. Apoptosis percentage was found to increase in a dose dependent manner. So, prepared titanium complexes can be put to use as an important chemotherapeutic agents.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
15.
Biotechnol Rep (Amst) ; 15: 11-23, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28603692

RESUMO

Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

16.
Int J Med Chem ; 2016: 2361214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119022

RESUMO

Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L(1-4))] and [TiCl3(bzac)(HL(5))]; bzac = benzoylacetonate; L(1-5) = benzohydroximate (L(1)), salicylhydroximate (L(2)), acetohydroximate (L(3)), hydroxyurea (L(4)), and N-benzoyl-N-phenyl hydroxylamine (L(5)), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1-5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (K b ) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes.

17.
Pol J Microbiol ; 64(3): 227-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26638531

RESUMO

The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Meios de Cultura/metabolismo , Polímeros/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Fermentação , Rizosfera
18.
J Environ Biol ; 32(6): 765-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22471214

RESUMO

The sella-rice mill effluent is a major environmental pollutant requiring proper treatment before disposal. The present study has been conducted to isolate and characterize micro-organisms capable of growing on sella-rice effluent and to optimize conditions for its rapid bioremediation. Using three different types of media (LB, YEPDA and PDA), a total of 139 isolates were isolated from effluent samples collected from three different locations. Out of these, 45 isolates were found to utilize starch on starch medium, eight isolates showing high efficiency. For the optimization of conditions for maximum utilization of starch by selected isolates, parameters such as effect of addition of carbon and nitrogen sources, effect of growth factors, temperature and pH were studied. Maximum growth (absorbance of 2.10) and starch-utilization (varying in the range of 2.33 to 3.62) was observed on starch medium supplemented with peptone and yeast extract at 30 degrees C with a pH of 6.0. These bacterial isolates also reduced the amount of starch (80.10%), BOD (64.24%) and COD (75.0%) of sella-rice mill effluent after 15 days of incubation. On the basis of morphological and biochemical characteristics, the selected isolates were found to belong to the genera Lactobacillus and Micrococcus.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Indústria Alimentícia , Resíduos Industriais , Eliminação de Resíduos Líquidos , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
19.
Appl Biochem Biotechnol ; 160(8): 2256-64, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19844665

RESUMO

Tannase from Aspergillus awamori MTCC 9299 was purified using ammonium sulfate precipitation followed by ion-exchange chromatography. A purification fold of 19.5 with 13.5% yield was obtained. Temperature of 30 degrees C and pH of 5.5 were found optimum for tannase activity. The effects of metals and organic solvents on the activity of tannase were also studied. Metal ions Mg(+2), Mn(+2), Ca(+2), Na(+), and K(+) stimulated the tannase activity, while Cu(+2), Fe(+3), and Co(+2) acted as inhibitors of the enzyme. The addition of organic solvents like acetic acid, isoamylalcohol, chloroform, isopropyl alcohol, and ethanol completely inhibited the enzyme activity. However, butanol and benzene increased the enzyme activity.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Metais/metabolismo , Compostos Orgânicos/metabolismo , Solventes/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Fermentação , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Peso Molecular , Temperatura
20.
Indian J Microbiol ; 49(2): 120-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23100760

RESUMO

The native population of phosphate solubilizing bacteria (PSB) was studied in the rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. A total of 193 PSB were isolated from 245 rhizospheric samples collected from south-west and north-east zones. The PSB count showed large variations (3-67 × 10(5)cfu/g) and biodiversity within the crop and place of sampling. Using biochemical analysis, the isolates were tentatively identified as belonging to four genera, Pseudomonas, Aeromonas, Klebsiella and Enterobacter. Phosphate solubilization of these isolates varied from 5.9 to 123.8% and 2.2 to 227.2 µg/ml in solid and liquid Pikovskaya's medium, respectively. Based on their morphological traits, all the isolates were placed into 20 groups, majority of them falling in the group having white, round and gummy colonies, irrespective of the crop or the region. The intrinsic antibiotic resistance pattern showed large variations among the isolates and most of the isolates were resistant to streptomycin, ampicillin and penicillin. The highest PSB number and greatest variability were found in the rhizosphere of chickpea, followed by wheat and then mustard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...