Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 6(1): 29, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623041

RESUMO

Immunogenicity of vaccines against meningococcal serogroup B (MenB) has been assessed pre-licensure with a human serum bactericidal activity assay (hSBA), tested against small numbers of strains. We report the qualification/validation of an alternative qualitative hSBA which uses endogenous complement (enc-hSBA) present in the vaccinee's serum. Serum samples were collected from adults pre-vaccination and post-vaccination with the 4-component MenB vaccine (4CMenB). A representative panel of invasive isolates and 4 antigen-specific indicator strains were used in qualification experiments. Each strain was tested in ≥3 experiments with pre/post-vaccination sera to evaluate intermediate precision. A 110-strain panel and the 4 indicator strains met qualification criteria, demonstrating assay precision. Assay robustness, specificity and sensitivity were demonstrated using the 4 indicator strains. Enc-hSBA is highly standardized, allows testing across large panels of epidemiologically-relevant MenB strains, and accounts for complement activity differences between vaccinees. Therefore, enc-hSBA enables a more accurate estimation of effectiveness for vaccines against MenB.

2.
PLoS Pathog ; 10(7): e1003866, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992561

RESUMO

In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.


Assuntos
Genes Fúngicos/fisiologia , Família Multigênica/fisiologia , Tumores de Planta/microbiologia , Plântula/microbiologia , Zea mays/microbiologia , Deleção de Genes , Ustilago/genética , Ustilago/metabolismo , Ustilago/patogenicidade
3.
Elife ; 3: e01355, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24473076

RESUMO

The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin-proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Zea mays/microbiologia , Interações Hospedeiro-Patógeno
4.
Microb Ecol ; 61(4): 853-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360140

RESUMO

Non-trophic interactions are increasingly recognised as a key parameter of predator-prey interactions. In soil, predation by bacterivorous nematodes is a major selective pressure shaping soil bacterial communities, and many bacteria have evolved defence mechanisms such as toxicity. In this study, we show that extracellular secondary metabolites produced by the model soil bacterium Pseudomonas fluorescens CHA0 function as a complex defence strategy against bacterivorous nematodes. Using a collection of functional mutants lacking genes for the biosynthesis of one or several extracellular metabolites, we evaluated the impact of bacterial secondary metabolites on the survival and chemotactic behaviour of the nematode Caenorhabditis elegans. Additionally, we followed up the stress status of the nematodes by measuring the activation of the abnormal DAuer Formation (DAF) stress cascade. All studied secondary metabolites contributed to the toxicity of the bacteria, with hydrogen cyanide efficiently repelling the nematodes, and both hydrogen cyanide and 2,4-DAPG functioning as nematicides. Moreover, these metabolites elicited the DAF stress response cascade of C. elegans, showing that they affect nematode physiology already at sublethal concentrations. The results suggest that bacterial secondary metabolites responsible for the suppression of plant pathogens strongly inhibit bacterivorous nematodes and thus likely contribute to the resistance of bacteria against predators in soil.


Assuntos
Antinematódeos/metabolismo , Caenorhabditis elegans/fisiologia , Pseudomonas fluorescens/metabolismo , Animais , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Comportamento Predatório , Pseudomonas fluorescens/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...