Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
1.
Nat Commun ; 15(1): 5802, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987248

RESUMO

Next-generation light-emitting applications such as displays and optical communications require judicious control over emitted light, including intensity and angular dispersion. To date, this remains a challenge as conventional methods require cumbersome optics. Here, we report highly directional and enhanced electroluminescence from a solution-processed quasi-2-dimensional halide perovskite light-emitting diode by building a device architecture to exploit hybrid plasmonic-photonic Tamm plasmon modes. By exploiting the processing and bandgap tunability of the halide perovskite device layers, we construct the device stack to optimise both optical and charge-injection properties, leading to narrow forward electroluminescence with an angular full-width half-maximum of 36.6° compared with the conventional isotropic control device of 143.9°, and narrow electroluminescence spectral full-width half-maximum of 12.1 nm. The device design is versatile and tunable to work with emission lines covering the visible spectrum with desired directionality, thus providing a promising route to modular, inexpensive, and directional operating light-emitting devices.

3.
Analyst ; 149(13): 3513-3517, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38842276

RESUMO

Live chicken egg embryos offer new opportunities for evaluation and continuous monitoring of tumour growth for in vivo studies compared to traditional rodent models. Here, we report the first use of surface enhanced Raman scattering (SERS) mapping and surface enhanced spatially offset Raman scattering (SESORS) for the detection and localisation of targeted gold nanoparticles in live chicken egg embryos bearing a glioblastoma tumour.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Animais , Análise Espectral Raman/métodos , Ouro/química , Embrião de Galinha , Nanopartículas Metálicas/química , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Humanos , Propriedades de Superfície , Modelos Animais de Doenças , Linhagem Celular Tumoral
4.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38826432

RESUMO

Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain and unravel the underlying mechanisms.

5.
Semin Perinatol ; 48(4): 151921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871489

RESUMO

The maternal/newborn dyad presents special challenges to infection management. Early in the COVID-19 pandemic, lack of information regarding SARS-CoV-2 transmission and virulence made it difficult to develop appropriate care guidance when pregnant persons had COVID-19 at the time of presentation for childbirth. We will review the considerations for the parturient, newborn, and care team, and describe the evolution of perinatal COVID management guidance.


Assuntos
COVID-19 , Transmissão Vertical de Doenças Infecciosas , Assistência Perinatal , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/transmissão , COVID-19/prevenção & controle , Recém-Nascido , Gravidez , Feminino , Complicações Infecciosas na Gravidez/terapia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Assistência Perinatal/métodos
6.
Nature ; 631(8019): 73-79, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867044

RESUMO

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.

7.
Forensic Sci Int ; 361: 112080, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38838611

RESUMO

In infantile abusive head injury (AHT), subdural haemorrhage (SDH) is commonly held to result from traumatic damage to bridging veins traversing from the surface of the brain to the dura and dural venous sinuses. However, there are limited published radiological or autopsy demonstrations of ruptured bridging veins and several authors also assert that bridging veins are too large to rupture due to the forces associated with AHT. There have been several studies on the size, locations and numbers of adult bridging veins and there is one small study of infant bridging veins. However, there are no microscopic studies of infant bridging veins and only a select few ultrastructural investigations of adult bridging veins. Hitherto, it has been assumed that bridging veins from infants and younger children will display the same anatomical characteristics as those in adulthood. At 19 neonatal, infant and young child post-mortem examinations, we macroscopically examined and sampled bridging veins for microscopy. We compared the histology of those samples with bridging veins from an older child and two adults. We demonstrate that adult bridging veins are usually surrounded by supportive meningeal tissue that appears to be lacking or minimally present around the bridging veins of younger children. Neonatal, infant and young children's veins had a free 'bridging' section. Neonatal and infant bridging veins had smaller diameter ranges and thinner walls (some only 5-7 µm) than those seen in older children and adults. Bridging vein walls contained both fine strands of elastic fibers and a more pronounced elastic lamina. The presence of an elastic lamina occurred more frequently in the older age groups These anatomical differences between the veins of adults and young children may help to explain apparent increased vulnerability of neonatal/infant bridging veins to the forces associated with a shaking-type traumatic event.

8.
Cell Rep ; 43(5): 114250, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38762882

RESUMO

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.


Assuntos
Encéfalo , Microglia , Células Mieloides , Fenótipo , Acidente Vascular Cerebral , Animais , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Células Mieloides/metabolismo , Microglia/patologia , Microglia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/patologia
9.
Sci Adv ; 10(22): eadn7786, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809992

RESUMO

Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.


Assuntos
Imunidade Humoral , Animais , Camundongos , Trato Gastrointestinal/imunologia , Tecido Linfoide/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Linfonodos/imunologia , Imunoglobulina A/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Neutralizantes/imunologia , Feminino , Linfócitos B/imunologia , Adjuvantes de Vacinas , Camundongos Endogâmicos C57BL , Humanos
10.
Cureus ; 16(4): e59359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38817466

RESUMO

Inflammatory pseudotumor encompasses a spectrum of both neoplastic and non-neoplastic conditions characterized by a histological pattern featuring a proliferation of cytologically bland spindle cells, accompanied by a prominent chronic inflammatory infiltrate. Within this spectrum, inflammatory myofibroblastic tumor (IMT) has emerged as a distinct entity over the past two decades, marked by unique clinical, pathological, and molecular characteristics. Typically affecting the visceral soft tissues of children and adolescents, IMT exhibits a propensity for local recurrence while posing a minimal risk of distant metastasis. They are extremely rare in adults, constituting less than 1% of adult lung tumors. Our patient, a 63-year-old female, has an intricate medical background, encompassing chronic obstructive pulmonary disease (COPD), a previous history of smoking (35 pack-years, quit a year before admission), coronary artery disease, non-obstructive hypertrophic cardiomyopathy, and obstructive sleep apnea. Presenting with a diagnostic dilemma, she recently received treatment for non-small cell carcinoma with radiation therapy, which has evolved into a swiftly advancing case of IMT.

11.
Microbiol Spectr ; 12(7): e0394323, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757984

RESUMO

Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and ß-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.


Assuntos
Proteínas Fúngicas , Lignina , Proteômica , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Secretoma/metabolismo , Biomassa , Celulases/metabolismo , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/enzimologia
12.
Environ Sci Technol ; 58(22): 9714-9722, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780409

RESUMO

Gold nanoparticles (Au-NPs) are used as catalysts for a diverse range of industrial applications. Currently, Au-NPs are synthesized chemically, but studies have shown that plants fed Au deposit, this element naturally as NPs within their tissues. The resulting plant material can be used to make biomass-derived catalysts. In vitro studies have shown that the addition of specific, short (∼10 amino acid) peptide/s to solutions can be used to control the NP size and shape, factors that can be used to optimize catalysts for different processes. Introducing these peptides into the model plant species, Arabidopsis thaliana (Arabidopsis), allows us to regulate the diameter of nanoparticles within the plant itself, consequently influencing the catalytic performance in the resulting pyrolyzed biomass. Furthermore, we show that overexpressing the copper and gold COPPER TRANSPORTER 2 (COPT2) in Arabidopsis increases the uptake of these metals. Adding value to the Au-rich biomass offers the potential to make plant-based remediation and stabilization of mine wastes financially feasible. Thus, this study represents a significant step toward engineering plants for the sustainable recovery of finite and valuable elements from our environment.


Assuntos
Arabidopsis , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Arabidopsis/metabolismo , Catálise , Biomassa , Tamanho da Partícula , Cobre/química
13.
Angew Chem Int Ed Engl ; 63(29): e202402052, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705856

RESUMO

Carbene-metal-amides (CMAs) are emerging delayed fluorescence materials for organic light-emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time-resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge-transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small-molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited-state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor-moiety 3LE states to spectral features, with no strong evidence for a low-lying acceptor-centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials.

15.
medRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746398

RESUMO

Neurofilament light (NfL) concentration in cerebrospinal fluid (CSF) and blood serves as an important biomarker in neurology drug development. Changes in NfL are generally assumed to reflect changes in neuronal damage, while little is known about the clearance of NfL from biofluids. We observed an NfL increase of 3.5-fold in plasma and 5.7-fold in CSF in an asymptomatic individual at risk for genetic prion disease following 6 weeks' treatment with oral minocycline for a dermatologic indication. Other biomarkers remained normal, and proteomic analysis of CSF revealed that the spike was exquisitely specific to neurofilaments. NfL dropped nearly to normal levels 5 weeks after minocycline cessation, and the individual remained free of disease 2 years later. Plasma NfL in dermatology patients was not elevated above normal controls. Dramatically high plasma NfL (>500 pg/mL) was variably observed in some hospitalized individuals receiving minocycline. In mice, treatment with minocycline resulted in variable increases of 1.3- to 4.0-fold in plasma NfL, with complete washout 2 weeks after cessation. In neuron-microglia co-cultures, minocycline increased NfL concentration in conditioned media by 3.0-fold without any visually obvious impact on neuronal health. We hypothesize that minocycline does not cause or exacerbate neuronal damage, but instead impacts the clearance of NfL from biofluids, a potential confounder for interpretation of this biomarker.

16.
Adv Mater ; : e2404357, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727713

RESUMO

Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.

17.
Nat Commun ; 15(1): 4547, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806514

RESUMO

Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces. Our L-site exchange process (L: barrier molecule cation) enables the formation of stable interfacial structures with moderate conductivity despite the thick barriers. Compared to popular short (∼1 nm) Ls, our approach results in enhanced radiation efficiency through the recursive process of photon recycling. This leads to the realization of radiative perovskite photovoltaics with both high photovoltaic efficiency (in-lab 26.0%, certified to 25.2%) and electroluminescence quantum efficiency (19.7 % at peak, 17.8% at 1-sun equivalent condition). Furthermore, the stable crystallinity of oleylammonium-based quantum wells enables our devices to maintain high efficiencies for over 1000 h of operation and >2 years of storage.

18.
JCI Insight ; 9(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713510

RESUMO

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Assuntos
Modelos Animais de Doenças , Interleucina-6 , Mieloma Múltiplo , Animais , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Camundongos , Interleucina-6/metabolismo , Camundongos Transgênicos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Masculino , Feminino , Plasmócitos/imunologia , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Gamopatia Monoclonal de Significância Indeterminada/patologia
19.
Nat Commun ; 15(1): 3937, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729924

RESUMO

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.


Assuntos
Apoptose , Criopreservação , Granzimas , Interleucina-15 , Interleucina-18 , Células Matadoras Naturais , Granzimas/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Interleucina-18/metabolismo , Animais , Criopreservação/métodos , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas
20.
Small Methods ; : e2301572, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695753

RESUMO

In recent years, there has been an increased focus on studying light-battery interactions in the context of operando optical studies and integrated photoelectrochemical energy harvesting. However, there has been little insight into identifying suitable "light-accepting" current collectors for this class of batteries. In this study, fluorine-doped tin oxide, indium-tin oxide, and silver nanowire-graphene films are analyzed along with carbon paper, carbon nanotube paper, and stainless-steel mesh as current collectors for optical batteries. They are categorized into two classes - transmissive and non-transmissive, based on the orientation of the light-electrode interaction. Various methods to prepare the electrode are highlighted, including drop casting and the fabrication of free-standing electrodes. The optical and electrical properties of these current collectors as well as their electrochemical stability are measured using linear sweep voltammetry against zinc and lithium anodes. Finally, the rate performance and long-term cycling stability of lithium manganese oxide (LiMn2O4) cathodes are measured against lithium anodes with these current collectors and their performance is compared. These results show which current collector to choose depends on the application and cell chemistry. These guidelines will assist in the design of future optical cells for in-situ measurements and photoelectrochemical energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...