Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 146: 42-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731113

RESUMO

Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Betula pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.


Assuntos
Ecossistema , Florestas , Raios Ultravioleta , Finlândia , Fotólise , Folhas de Planta
2.
Plant Physiol Biochem ; 134: 40-52, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30219502

RESUMO

Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperatures and higher solar radiation towards the top of hummocks suffered greater photoinhibition than those at the base of hummocks. Epidermal UV-screening was highest in upper-hummock leaves, particularly during winter when lower leaves were beneath the snowpack. There was also a negative relationship between indices of flavonols and anthocyanins across all leaves suggesting fine-tuning of flavonoid composition for screening vs. antioxidant activity in response to temperature and irradiance. However, the positive correlation between the maximum quantum yield of photosystem II photochemistry (Fv/Fm) and flavonol accumulation in upper hummock leaves during dehardening did not confer on them any greater cross-protection than would be expected from the general relationship of Fv/Fm with temperature and irradiance (throughout the hummocks). Irrespective of timing of snow-melt, photosynthesis fully recovered in all leaves, suggesting that V. vitis-idaea has the potential to exploit the continuing trend for longer growing seasons in central Finland without incurring significant impairment from reduced duration of snow cover.


Assuntos
Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Raios Ultravioleta , Vaccinium vitis-Idaea/fisiologia , Vaccinium vitis-Idaea/efeitos da radiação , Flavonoides/metabolismo , Florestas , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/metabolismo , Neve , Solo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...