Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 99(4): 674-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26508112

RESUMO

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Flagelos/fisiologia , Nucleotídeos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/fisiologia , Cristalização , Cristalografia por Raios X , Flagelina/metabolismo , Genes Arqueais , Microscopia Eletrônica , Modelos Moleculares , Movimento , Sulfolobus acidocaldarius/genética
2.
FEBS J ; 280(23): 6141-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103130

RESUMO

Archaella are the archaeal motility structure that is the functional pendant of the bacterial flagellum but is assembled by a mechanism similar to that for type IV pili. Recently, it was shown by Banerjee et al. that FlaX, a crenarchaeal archaellum subunit from Sulfolobus acidocaldarius, forms a ring-like oligomer, and it was proposed that this ring may act as a static platform for torque generation in archaellum rotation [Banerjee A et al. (2012) J Biol Chem 287, 43322-43330]. Moreover, the hexameric crystal structure of FlaI was solved, and its dual function in the assembly and the rotation of the archaellum was demonstrated [Reindl S et al. (2013) Mol Cell 49, 1069-1082]. In this study, we show by biochemical and biophysical techniques that FlaX from S. acidocaldarius acts as a cytoplasmic scaffold in archaellum assembly, as it interacts with FlaI as well as with the recA family protein FlaH, the only cytoplasmic components of the archaellum. Interaction studies using various truncated versions of FlaI demonstrated that its N- and C-termini interact with FlaX. Moreover, using microscale thermophoresis, we show that FlaI, FlaX and FlaH interact with high affinities in the nanomolar range. Therefore, we propose that these three proteins form the cytoplasmic motor complex of the archaellum.


Assuntos
Proteínas Arqueais/metabolismo , Citoplasma/metabolismo , Flagelos/metabolismo , Proteínas Recombinantes/metabolismo , Sulfolobus acidocaldarius/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Membrana Celular/metabolismo , Dicroísmo Circular , Corpos de Inclusão , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Proteínas Recombinantes/genética , Espectrofotometria Ultravioleta , Sulfolobus acidocaldarius/genética
3.
Mol Cell ; 49(6): 1069-82, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23416110

RESUMO

Superfamily ATPases in type IV pili, type 2 secretion, and archaella (formerly archaeal flagella) employ similar sequences for distinct biological processes. Here, we structurally and functionally characterize prototypical superfamily ATPase FlaI in Sulfolobus acidocaldarius, showing FlaI activities in archaeal swimming-organelle assembly and movement. X-ray scattering data of FlaI in solution and crystal structures with and without nucleotide reveal a hexameric crown assembly with key cross-subunit interactions. Rigid building blocks form between N-terminal domains (points) and neighboring subunit C-terminal domains (crown ring). Upon nucleotide binding, these six cross-subunit blocks move with respect to each other and distinctly from secretion and pilus ATPases. Crown interactions and conformations regulate assembly, motility, and force direction via a basic-clamp switching mechanism driving conformational changes between stable, backbone-interconnected moving blocks. Collective structural and mutational results identify in vivo functional components for assembly and motility, phosphate-triggered rearrangements by ATP hydrolysis, and molecular predictors for distinct ATPase superfamily functions.


Assuntos
Adenosina Trifosfatases/química , Proteínas Arqueais/química , Sulfolobus acidocaldarius/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Domínio Catalítico , Cristalografia por Raios X , Flagelos/enzimologia , Flagelos/ultraestrutura , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Sulfolobus acidocaldarius/ultraestrutura , Propriedades de Superfície
4.
Mol Microbiol ; 83(1): 110-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081969

RESUMO

The ability to move towards favourable conditions provides fundamental advantages to organisms. Interestingly, flagella as motility structures evolved independently in the bacterial and the archaeal kingdom. Whereas bacterial flagella have been intensively studied, our knowledge regarding the archaeal counterpart is mostly restricted to Euryarchaeota rather than crenarchaeal flagella. We therefore investigated the flagellar assembly system of the crenarchaeal model organism Sulfolobus acidocaldarius in vivo. Promoter studies and qRT-PCR analyses of the flagella gene cluster provided evidence that the expression of the fla genes was induced by tryptone starvation. Moreover, we confirmed presence of a secondary fla promoter within the flaB gene that regulates the transcription of downstream genes flaX-J. Markerless in-frame deletions for all fla genes encoded in the fla gene cluster were constructed. Western blot analysis of all fla deletion strains suggested hierarchical protein interactions during the archaeal flagella assembly. Moreover, functional analysis by thermomicroscopy revealed non-motile cells for each of the mutant strains. Electron micrographs demonstrated that lack of motility coincided with the loss of flagellar assembly. Thus we demonstrated that all seven fla genes are essential for crenarchaeal flagellum assembly and function.


Assuntos
Flagelos/genética , Sulfolobus acidocaldarius/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica em Archaea , Dados de Sequência Molecular , Sulfolobus acidocaldarius/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...