Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 9(8): e0003999, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26270533

RESUMO

BACKGROUND: Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a tetracycline repressible self-limiting strain of Ae. aegypti OX513A which has achieved >90% suppression of wild populations. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the impact of tetracycline and its analogues on the phenotype of OX513A from the perspective of possible routes and levels of environmental exposure. We determined the minimum concentration of tetracycline and its analogues that will allow an increased survivorship and found these to be greater than the maximum concentration of tetracyclines found in known Ae. aegypti breeding sites and their surrounding areas. Furthermore, we determined that OX513A parents fed tetracycline are unable to pre-load their progeny with sufficient antidote to increase their survivorship. Finally, we studied the changes in concentration of tetracycline in the mass production rearing water of OX513A and the developing insect. CONCLUSION/SIGNIFICANCE: Together, these studies demonstrate that potential routes of exposure of OX513A individuals to tetracycline and its analogues in the environment are not expected to increase the survivorship of OX513A.


Assuntos
Aedes/efeitos dos fármacos , Antibacterianos/farmacologia , Clortetraciclina/farmacologia , Insetos Vetores/efeitos dos fármacos , Aedes/classificação , Aedes/genética , Animais , Animais Geneticamente Modificados , Doxiciclina/farmacologia , Feminino , Água Doce/química , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Letais , Heterozigoto , Insetos Vetores/classificação , Insetos Vetores/genética , Larva/efeitos dos fármacos , Larva/genética , Masculino , Oxitetraciclina/farmacologia , Fenótipo
2.
Pathog Glob Health ; 107(4): 170-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23816508

RESUMO

Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches.


Assuntos
Aedes/fisiologia , Insetos Vetores , Controle de Mosquitos/métodos , Aedes/genética , Aedes/microbiologia , Animais , Densidade Demográfica , Wolbachia/crescimento & desenvolvimento
3.
J Insect Physiol ; 58(4): 551-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22251674

RESUMO

Mosquito larvae exhibit luminal pH extremes along the axial length of their alimentary canal that range from very alkaline (pH>10) in the anterior midgut to slightly acid in the hindgut. The principal buffer in the system is thought to be bicarbonate and/or carbonate, because the lumen is known to contain high levels of bicarbonate/carbonate and is surrounded by various epithelial cell types which express a variety of carbonic anhydrases. However, the precise mechanisms responsible for the transport of bicarbonate/carbonate into and out of the lumen are unclear. In the present study, we test the hypothesis that SLC4-like anion transporters play a role in bicarbonate/carbonate accumulation in the larval mosquito alimentary canal. Molecular, physiological and immnuohistochemical characterizations of Slc4-like transporters in the gut of larval mosquitoes (Aedes aegypti and Anopheles gambiae) demonstrate the presence of both a Na(+)-independent chloride/bicarbonate anion exchanger (AE) as well as a Na(+)-dependent anion exchanger (NDAE). Notably, immunolocalization experiments in Malpighian tubules show that the two proteins can be located in the same tissue, but to different cell types. Immunolabeling experiments in the gastric caecae show that the two proteins can be found in the same cells, but on opposite sides (basal vs. apical). In summary, our results indicate that the alimentary canal of larval mosquitoes exhibits robust expression of two SLC4-like transporters in locations that are consistent with a role in the regulation of luminal pH. The precise physiological contributions of each transporter remain to be determined.


Assuntos
Aedes/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Anopheles/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/genética , Anopheles/genética , Antiportadores de Cloreto-Bicarbonato/genética , Feminino , Trato Gastrointestinal/metabolismo , Larva/metabolismo , Dados de Sequência Molecular , Xenopus
4.
J Exp Biol ; 212(Pt 11): 1662-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448076

RESUMO

Mosquito larvae use a digestive strategy that is relatively rare in nature. The anterior half of the larval mosquito midgut has a luminal pH that ranges between 10.5 and 11.5. Most other organisms, both large and small, initiate digestion in an acid medium. The relative uniqueness of the highly alkaline digestive strategy has been a long-standing research focus in larval lepidopterans. More recently, the disease vector potential of mosquitoes has fueled specific interest in larval mosquito biology and the alkaline digestive environment in the midgut. The probable principle anion influencing the highly alkaline gut lumen is bicarbonate/carbonate. Bicarbonate/carbonate is regulated at least in part by the activity of carbonic anhydrases. Hence, we have focused attention on the carbonic anhydrases of the mosquito larva. Anopheles gambiae, the major malaria mosquito of Africa, is an organism with a published genome which has facilitated molecular analyses of the 12 carbonic anhydrase genes annotated for this mosquito. Microarray expression analyses, tissue-specific quantitative RT-PCR, and antibody localization have been used to generate a picture of carbonic anhydrase distribution in the larval mosquito. Cytoplasmic, GPI-linked extracellular membrane-bound and soluble extracellular carbonic anhydrases have been located in the midgut and hindgut. The distribution of the enzymes is consistent with an anion regulatory system in which carbonic anhydrases provide a continuous source of bicarbonate/carbonate from the intracellular compartments of certain epithelial cells to the ectoperitrophic space between the epithelial cells and the acellular membrane separating the food bolus from the gut cells and finally into the gut lumen. Carbonic anhydrase in specialized cells of the hindgut (rectum) probably plays a final role in excretion of bicarbonate/carbonate into the aquatic environment of the larva. Detection and characterization of classic anion exchangers of the SLC4A family in the midgut has been problematic. The distribution of carbonic anhydrases in the system may obviate the requirement for such transporters, making the system more dependent on simple carbon dioxide diffusion and ionization via the activity of the enzyme.


Assuntos
Ânions/metabolismo , Transporte Biológico/fisiologia , Anidrases Carbônicas/metabolismo , Culicidae/metabolismo , Trato Gastrointestinal/fisiologia , Animais , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA