Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 628: 122289, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252647

RESUMO

UV-induced fingerprint spectroscopy (UV-IFS), a new tool in a toolbox of analytical methods, is a powerful technique registering molecule-specific changes of fluorescence induced by UV irradiation. Analysis of fluorescence spectra of a sample prior and after UV irradiation enables an identification of a sample of a drug or pharmaceutics based on a comparison with signals of known standards. Moreover, UV-IFS uncovers the presence of undesired contaminations or intentional changes of the composition. Herein, we employ UV-IFS for qualitative as well as quantitative analysis of common medicines including analgesic/antipyretic (Acetaminophen), antihistamines (Loratadine and Desloratadine), and phosphodiesterase type 5 inhibitors (Tadalafil and Sildenafil citrate). UV irradiation (λem = 254 nm) for 2 - 10 min induced significant changes of fluorescence of the studied samples and according to the unique patterns, the quality and quantity were evaluated. Limits of detection for individual active ingredients were calculated as follows: Acetaminophen = 0.1 µg·mL-1, Loratadine = 0.1 µg·mL-1, Desloratadine = 0.01 µg·mL-1, Tadalafil = 0.04 µg·mL-1 and Sildenafil = 0.2 µg·mL-1. Moreover, genuine and fake CIALIS, VIAGRA and KAMAGRA tablets were reliably identified.


Assuntos
Acetaminofen , Loratadina , Tadalafila , Citrato de Sildenafila , Comprimidos , Análise Espectral
2.
Astrobiology ; 22(5): 541-551, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333585

RESUMO

Quantum dots (QDs) are usually seen as artificial semiconductor particles exhibiting optical and electronic properties interesting for nanotechnological applications. However, they may also play a role in prebiotic chemistry. Starting from zinc acetate, cadmium acetate, and mercaptosuccinic acid, we demonstrate the formation of ZnCd QDs upon UV irradiation in prebiotic liquid formamide. We show that ZnCd QDs are able to increase the yield of RNA nucleobase synthesis from formamide up to 300 times, suggesting they might have served as universal catalysts in a primordial milieu. Based on the experimentally observed peroxidase-like activity of ZnCd QDs upon irradiation with visible light, we propose that QDs could be relevant to a broad variety of processes relating to the emergence of terrestrial life.


Assuntos
Fontes Termais , Pontos Quânticos , Catálise , Formamidas , Peroxidase , Pontos Quânticos/química
3.
Food Chem ; 380: 132141, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35101791

RESUMO

In this proof-of-concept study, we explore the detection of pesticides in food using a combined power of sensitive UV-induced fingerprint spectroscopy with selective capture by molecularly imprinted polymers (MIPs) and portable cost-effective paper-based analytical devices (PADs). The specific pesticides used herein as model compounds (both pure substances and their application products for spraying), were: strobilurins (i.e. trifloxystrobin), urea pesticides (rimsulfuron), pyrethroids (cypermethrine) and aryloxyphenoxyproponic acid herbicides (Haloxyfop-methyl). Commercially available spraying formulations containing the selected pesticides were positively identified by MIP-PADs swabs of sprayed apple and tomato. The key properties of MIP layer - imprinting factor (IF) and selectivity factor (α) were characterized using trifloxystrobin (IF-3.5, α-4.4) was demonstrated as a potential option for in-field application. The presented method may provide effective help with in-field testing of food and reveal problems such as false product labelling.


Assuntos
Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Praguicidas/análise , Espectrometria de Fluorescência
4.
Food Chem ; 368: 130499, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34496333

RESUMO

Here, we present the potential analytical applications of photochemistry in combination with fluorescence fingerprinting. Our approach analyzes the fluorescence of samples after ultraviolet light (UV) treatment. Especially in presence of metal ions and thiol-containing compounds, the fluorescence behavior changes considerably. The UV-induced reactions (changes) are unique to a given sample composition, resulting in distinct patterns or fingerprints (typically in the 230-600 nm spectral region). This method works without the need for additional chemicals or fluorescent probes, only suitable diluent must be used. The proposed method (UV fingerprinting) suggests the option of recognizing various types of pharmaceuticals, beverages (juices and wines), and other samples within only a few minutes. In some studied samples (e.g. pharmaceuticals), significant changes in fluorescence characteristics (mainly fluorescence intensity) were observed. We believe that the fingerprinting technique can provide an innovative solution for analytical detection.


Assuntos
Corantes Fluorescentes , Raios Ultravioleta , Íons , Metais , Análise Espectral
5.
Sci Rep ; 11(1): 13806, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226580

RESUMO

In this work, we explored a new approach to a simple and sensitive fluorescence detection of thiols. The approach takes advantage of an in-situ formation of UV light-induced fluorescent nanoparticles (ZnCd/S quantum dots), while utilizing the thiol group of the analyte as a capping agent. The selectivity is ensured by the selective isolation of the thiol analyte by a polydopamine molecularly imprinted polymeric (MIP) layer. Based on this approach, a method for determination of thiols was designed. Key experimental parameters were optimized, including those of molecular imprinting and of effective model thiol molecule (L-cysteine) isolation. The relationship between the fluorescence intensity of ZnCd/S quantum dots and the concentration of L-cysteine in the range of 12-150 µg/mL was linear with a detection limit of 3.6 µg/mL. The molecularly imprinted polymer showed high absorption mass capacity (1.73 mg/g) and an excellent selectivity factor for L-cysteine compared to N-acetyl-L-cysteine and L-homocysteine of 63.56 and 87.48, respectively. The proposed method was applied for L-cysteine determination in human urine with satisfactory results. Due to a high variability of molecular imprinting technology and versatility of in-situ probe formation, methods based on this approach can be easily adopted for analysis of any thiol of interest.

6.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924594

RESUMO

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


Assuntos
Formamidas/química , Timina/química , Origem da Vida , Uracila/química
7.
Int J Biol Macromol ; 170: 53-60, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340626

RESUMO

Herein, we report a new simple and easy-to-use approach for the characterization of protein oligomerization based on fluorescence resonance energy transfer (FRET) and capillary electrophoresis with LED-induced detection. The FRET pair consisted of quantum dots (QDs) used as an emission tunable donor (emission wavelength of 450 nm) and a cyanine dye (Cy3), providing optimal optical properties as an acceptor. Nonoxidative dimerization of mammalian metallothionein (MT) was investigated using the donor and acceptor covalently conjugated to MT. The main functions of MTs within an organism include the transport and storage of essential metal ions and detoxification of toxic ions. Upon storage under aerobic conditions, MTs form dimers (as well as higher oligomers), which may play an essential role as mediators in oxidoreduction signaling pathways. Due to metal bridging by Cd2+ ions between molecules of metallothionein, the QDs and Cy3 were close enough, enabling a FRET signal. The FRET efficiency was calculated to be in the range of 11-77%. The formation of MT dimers in the presence of Cd2+ ions was confirmed by MALDI-MS analyses. Finally, the process of oligomerization resulting in FRET was monitored by CE, and oligomerization of MT was confirmed.


Assuntos
Acetatos/farmacologia , Cádmio/farmacologia , Eletroforese Capilar , Transferência Ressonante de Energia de Fluorescência/métodos , Metalotioneína/química , Pontos Quânticos , Animais , Carbocianinas , Dimerização , Transferência Ressonante de Energia de Fluorescência/instrumentação , Modelos Moleculares , Conformação Proteica , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática
8.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759824

RESUMO

Inorganic nanoparticles might have played a vital role in the transition from inorganic chemistry to self-sustaining living systems. Such transition may have been triggered or controlled by processes requiring not only versatile catalysts but also suitable reaction surfaces. Here, experimental results showing that multicolor quantum dots might have been able to participate as catalysts in several specific and nonspecific reactions, relevant to the prebiotic chemistry are demonstrated. A very fast and easy UV-induced formation of ZnCd quantum dots (QDs) with a quantum yield of up to 47% was shown to occur 5 min after UV exposure of the solution containing Zn(II) and Cd(II) in the presence of a thiol capping agent. In addition to QDs formation, xanthine activity was observed in the solution. The role of solar radiation to induce ZnCd QDs formation was replicated during a stratospheric balloon flight.

9.
Talanta ; 212: 120789, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113552

RESUMO

To ensure food safety and to prevent unnecessary foodborne complications this study reports fast, fully automated process for histamine determination. This method is based on magnetic separation of histamine with magnetic particles and quantification by the fluorescence intensity change of MSA modified CdSe Quantum dots. Formation of Fe2O3 particles was followed by adsorption of TiO2 on their surface. Magnetism of developed probe enabled rapid histamine isolation prior to its fluorescence detection. Quantum dots (QDs) of approx. 3 nm were prepared via facile UV irradiation. The fluorescence intensity of CdSe QDs was enhanced upon mixing with magnetically separated histamine, in concentration-dependent manner, with a detection limit of 1.6 µM. The linear calibration curve ranged between 0.07 and 4.5 mM histamine with a low LOD and LOQ of 1.6 µM and 6 µM. The detection efficiency of the method was confirmed by ion exchange chromatography. Moreover, the specificity of the sensor was evaluated and no cross-reactivity from nontarget analytes was observed. This method was successfully applied for the direct analysis of histamine in white wine providing detection limit much lower than the histamine maximum levels established by EU regulation in food samples. The recovery rate was excellent, ranging from 84 to 100% with an RSD of less than 4.0%. The main advantage of the proposed method is full automation of the analytical procedure that reduces the time and cost of the analysis, solvent consumption and sample manipulation, enabling routine analysis of large numbers of samples for histamine and highly accurate and precise results.


Assuntos
Contaminação de Alimentos/análise , Histamina/análise , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Compostos de Cádmio/química , Compostos Férricos/química , Fluorescência , Corantes Fluorescentes/química , Limite de Detecção , Fenômenos Magnéticos , Pontos Quânticos/química , Silanos/química , Telúrio/química , Titânio/química , Vinho/análise
10.
Chem Commun (Camb) ; 55(71): 10563-10566, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31417990

RESUMO

Besides delivering plausible prebiotic feedstock molecules and high-energy initiators, extraterrestrial impacts could also affect the process of abiogenesis by altering the early Earth's geological environment in which primitive life was conceived. We show that iron-rich smectites formed by reprocessing of basalts due to the residual post-impact heat could catalyze the synthesis and accumulation of important prebiotic building blocks such as nucleobases, amino acids and urea.


Assuntos
Argila/química , Ferro/química , Meteoroides , Silicatos/química , Aminoácidos/química , Catálise , Planeta Terra , Evolução Química , Meio Ambiente Extraterreno/química , Origem da Vida , Ureia/química
11.
Anal Chim Acta ; 1017: 41-47, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29534794

RESUMO

A capillary electrophoretic (CE) method using a short-sweep approach and laser-induced fluorescence (LIF) detection (ShortSweepCE-LIF) was developed for determination of Zn2+ and Cd2+ as complexes with highly selective and sensitive fluorescent probe FluoZin-3. The ShortSweepCE-LIF method, established in this work, can be used for examining competitive Zn2+ and Cd2+ binding properties of metalloproteins or peptides. The parameters including background electrolyte composition, injection pressure and time as well as separation voltage were investigated. Under the optimized conditions, 80 mM HEPES, pH 7.4, with 1.5 µM FluoZin-3 was used as an electrolyte, hydrodynamic injection was performed at 50 mbar for 5 s, and separation voltage of 25 kV. Limits of detection for Zn2+ and Cd2+ were 4 and 125 nM, respectively. The developed method was demonstrated in a study of interactions between metalothionein-2a isoform and metal ions Zn2+, Co2+ and Cd2+. It was found that FluoZin-3 was able to extract a single Zn2+ ion, while added Co2+ (in surplus) extracted only 2.4 Zn2+ ions, and Cd2+ extracted all 7 Zn2+ ions present in the metalothionein molecule.


Assuntos
Corantes Fluorescentes/química , Metalotioneína/análise , Imagem Óptica , Compostos Policíclicos/química , Zinco/análise , Cádmio/análise , Eletroforese Capilar , Íons/análise
12.
Nanotechnology ; 29(16): 165602, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29384137

RESUMO

'Green nanotechnology' is a term used for the design of nanomaterials and processes that reduce or eliminate the use and/or generation of hazardous substances. In this paper, a capillary electrophoresis (CE)-driven synthesis of CdTe quantum dots (QDs) and their subsequent conjugation with a metal-binding protein metallothionein (isofom MT1) is reported. Even though the toxic materials (cadmium and potassium borohydride) were used for synthesis, the proposed method can be labeled as 'environmentally friendly' because the whole process (synthesis of QDs and MT1 conjugation) was carried out under mild conditions: ultra-low volume (nanoliter scale), relatively low temperature (50 °C), atmospheric pressure, and completed in a short time (under 90 s). Prepared QDs were also characterized by classical fluorescence spectroscopy and transmission electron microscopy. This study opens up new possibilities for the utilization of classical CE in the synthesis of nanoparticles and on-line labeling of biomolecules in the nanoliter scale in short period of time.

13.
Sensors (Basel) ; 17(8)2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792458

RESUMO

Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm² that can be varied as required for analysis. The LODs were 80 ng·mL-1 for Cd(II) and 50 ng·mL-1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO3 environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.

14.
PLoS One ; 12(7): e0180798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704436

RESUMO

Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.


Assuntos
Dano ao DNA , Replicação do DNA , Nanopartículas Metálicas/efeitos adversos , Linhagem Celular , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Estresse Oxidativo , Platina/efeitos adversos , Platina/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
15.
J Nanobiotechnology ; 15(1): 33, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446250

RESUMO

Nanomaterials in agriculture are becoming popular due to the impressive advantages of these particles. However, their bioavailability and toxicity are key features for their massive employment. Herein, we comprehensively summarize the latest findings on the phytotoxicity of nanomaterial products based on essential metals used in plant protection. The metal nanoparticles (NPs) synthesized from essential metals belong to the most commonly manufactured types of nanomaterials since they have unique physical and chemical properties and are used in agricultural and biotechnological applications, which are discussed. The paper discusses the interactions of nanomaterials and vascular plants, which are the subject of intensive research because plants closely interact with soil, water, and atmosphere; they are also part of the food chain. Regarding the accumulation of NPs in the plant body, their quantification and localization is still very unclear and further research in this area is necessary.


Assuntos
Agricultura , Nanopartículas Metálicas/toxicidade , Metais/toxicidade , Nanotecnologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Plantas/efeitos dos fármacos , Agricultura/métodos , Nanopartículas Metálicas/química , Metais/química , Metais/metabolismo , Nanotecnologia/métodos , Plantas/metabolismo , Testes de Toxicidade/métodos
16.
Sensors (Basel) ; 16(3): 290, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927112

RESUMO

Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.


Assuntos
DNA Antissenso/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , DNA Antissenso/química , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Elipticinas/química , Elipticinas/uso terapêutico , Etoposídeo/química , Etoposídeo/uso terapêutico , Fluorescência , Ouro/química , Humanos , Lipossomos/química , Lipossomos/uso terapêutico , Nanopartículas de Magnetita/uso terapêutico , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética
17.
Electrophoresis ; 37(3): 444-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462605

RESUMO

Peptide-peptide interactions are crucial in the living cell as they lead to the formation of the numerous types of complexes. In this study, synthetic peptides containing 11 of cysteines (α-domain of metallothionein (MT)) and sialic acid binding region (130-loop of hemagglutinin (HA)) were employed. The aim of the experiment was studying the interactions between MT and HA-derived peptides. For this purpose, fragments were tagged with cysteines at C-terminal part to serve as ligand sites for PbS and CuS quantum dots (QDs), and therefore these conjugates can be traced and quantified during wide spectrum of methods. As a platform for interaction, γ-Fe2O3 paramagnetic particles modified with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane (hydrodynamic diameter 30-40 nm) were utilized and MT/HA interactions were examined using multi-instrumental approach including electrochemistry, electrophoretic methods, and MALDI-TOF/TOF mass spectrometry. It was found that peptides enter mutual creation of complexes, which are based on some of nonbonded interactions. The higher willingness to interact was observed in MT-derived peptides toward immobilized HA. Finally, we designed and manufactured flow-through electrochemical 3D printed device (reservoir volume 150 µL) and utilized it for automated analysis of the HA/MT metal labels. Under the optimal conditions, (deposition time and flow rate 80 s and 1.6 mL/min for CuS and 120 s and 1.6 mL/min PbS, respectively), the results of peptide-conjugated QDs were comparable with atomic absorption spectrometry.


Assuntos
Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/análise , Peptídeos/metabolismo , Impressão Tridimensional , Peptídeos/química , Ligação Proteica
18.
Materials (Basel) ; 9(1)2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787832

RESUMO

Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.

19.
Electrophoresis ; 36(19): 2367-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26046318

RESUMO

Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.


Assuntos
Eletrônica , Nanoporos , Nanotecnologia , Técnicas Analíticas Microfluídicas , Propriedades de Superfície
20.
Electrophoresis ; 36(16): 1894-904, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033737

RESUMO

A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 µL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 µg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.


Assuntos
Técnicas Eletroquímicas/instrumentação , Separação Imunomagnética/instrumentação , Metalotioneína/sangue , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Galinhas , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Neoplasias de Cabeça e Pescoço/sangue , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Separação Imunomagnética/métodos , Masculino , Pessoa de Meia-Idade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...