Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 157(5): R181-R197, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721132

RESUMO

In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.


Assuntos
Cavalos/fisiologia , Capacitação Espermática/fisiologia , Reação Acrossômica/fisiologia , Animais , Feminino , Fertilização/fisiologia , Humanos , Masculino , Mamíferos , Especificidade da Espécie , Espermatozoides/fisiologia
2.
Reprod Fertil Dev ; 29(6): 1085-1095, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27120206

RESUMO

The equine oviduct plays a pivotal role in providing the optimal microenvironment for early embryonic development, but little is known about the protein composition of the oviducal fluid in the horse. The aim of the present study was to provide a large-scale identification of proteins in equine oviducal fluid and to determine the effects of ovulation and pregnancy. Four days after ovulation, the oviducts ipsilateral and contralateral to the ovulation side were collected from five pregnant and five non-pregnant mares. Identification and relative quantification of proteins in the oviducal fluid of the four groups was achieved by isobaric tags for relative and absolute quantification (iTRAQ) labelling and HPLC-tandem mass spectrometry. The presence of an embryo in the ipsilateral oviducal fluid of pregnant mares induced upregulation of 11 and downregulation of two proteins compared with the contralateral side, and upregulation of 19 proteins compared with the ipsilateral side of non-pregnant mares. Several of these upregulated proteins are related to early pregnancy in other species. The present study represents the first high-throughput identification of proteins in the oviducal fluid of the mare. The results support the hypothesis that the equine embryo interacts with the oviduct, affecting the maternal secretion pattern of proteins involved in pregnancy-related pathways.


Assuntos
Secreções Corporais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oviductos/metabolismo , Ovulação/fisiologia , Proteínas da Gravidez/metabolismo , Prenhez/fisiologia , Proteínas/metabolismo , Animais , Secreções Corporais/enzimologia , Cromatografia Líquida de Alta Pressão/veterinária , Embrião de Mamíferos/fisiologia , Feminino , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Cavalos , Oviductos/fisiologia , Mapeamento de Peptídeos/veterinária , Gravidez , Proteínas da Gravidez/química , Proteínas da Gravidez/genética , Proteínas/química , Proteínas/genética , Proteômica/métodos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização por Electrospray/veterinária , Espectrometria de Massas em Tandem/veterinária
3.
Reproduction ; 152(6): R233-R245, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27651517

RESUMO

In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct.


Assuntos
Microambiente Celular/fisiologia , Fertilização in vitro/veterinária , Oviductos/fisiologia , Capacitação Espermática/fisiologia , Animais , Feminino , Cavalos , Masculino , Interações Espermatozoide-Óvulo
4.
Reproduction ; 151(4): 313-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26755687

RESUMO

In many species, sperm binding to oviduct epithelium is believed to be an essential step in generating a highly fertile capacitated sperm population primed for fertilization. In several mammalian species, this interaction is based on carbohydrate-lectin recognition. D-galactose has previously been characterized as a key molecule that facilitates sperm-oviduct binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) assays to investigate the effects of various carbohydrates; glycosaminoglycans; lectins; S-S reductants; and the capacitating factors albumin, Ca(2+) and HCO3(-) on sperm-oviduct binding in the horse. Carbohydrate-specific lectin staining indicated that N-acetylgalactosamine, N-acetylneuraminic acid (sialic acid) and D-mannose or D-glucose were the most abundant carbohydrates on equine oviduct epithelia, whereas D-galactose moieties were not detected. However, in a competitive binding assay, sperm-oviduct binding density was not influenced by any tested carbohydrates, glycosaminoglycans, lectins or D-penicillamine, nor did the glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. Furthermore, N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not alter sperm-oviduct binding density. By contrast, a combination of the sperm-capacitating factors albumin and HCO3(-) severely reduced (>10-fold) equine sperm-oviduct binding density by inducing rapid head-to-head agglutination, both of which events were independent of Ca(2+) and an elevated pH (7.9). Conversely, neither albumin and HCO3(-) nor any other capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination of albumin and HCO3(-) markedly induced sperm head-to-head agglutination which physically prevented stallion sperm to bind to oviduct epithelium.


Assuntos
Albuminas/farmacologia , Bicarbonatos/farmacologia , Oviductos/metabolismo , Aglutinação Espermática/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Cabeça do Espermatozoide/metabolismo , Animais , Soluções Tampão , Feminino , Cavalos , Masculino , Oviductos/efeitos dos fármacos , Cabeça do Espermatozoide/efeitos dos fármacos
5.
Reprod Fertil Dev ; 28(12): 1926-1944, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085435

RESUMO

The oviduct undergoes dramatic functional and morphological changes throughout the oestrous cycle of the mare. To unravel the effects of steroids on the morphology, functionality and gene expression of the equine oviduct, an in vitro oviduct explant culture system was stimulated with physiological concentrations of progesterone and 17ß-oestradiol. Four conditions were compared: unsupplemented preovulatory explants, preovulatory explants that were stimulated with postovulatory hormone concentrations, unsupplemented postovulatory explants and postovulatory explants that were stimulated with preovulatory hormone concentrations. The modulating effects of both steroids on oviduct explants were investigated and the following parameters examined: (1) ciliary activity, (2) glucose consumption and lactate production pattern, (3) ultrastructure, (4) mRNA expression of embryotrophic genes, (5) steroidogenic capacities of oviductal explants and (6) progesterone receptor expression. The present paper shows that the equine oviduct is an organ with potential steroidogenic capacities, which is highly responsive to local changes in progesterone and 17ß-oestradiol concentrations at the level of morphology, functionality and gene expression of the oviduct. These data provide a basis to study the importance of endocrine and paracrine signalling during early embryonic development in the horse.


Assuntos
Estradiol/farmacologia , Tubas Uterinas/fisiologia , Glucose/metabolismo , Progesterona/farmacologia , Receptores de Progesterona/metabolismo , Animais , Feminino , Cavalos , Técnicas de Cultura de Órgãos
6.
Reproduction ; 150(3): 193-208, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26242588

RESUMO

Induction of hyperactivated motility is considered essential for triggering the release of oviduct-bound mammalian spermatozoa in preparation for fertilization. In this study, oviduct-bound stallion spermatozoa were exposed for 2 h to: i) pre-ovulatory and ii) post-ovulatory oviductal fluid; iii) 100% and iv) 10% follicular fluid (FF); v) cumulus cells, vi) mature equine oocytes, vii) capacitating and viii) non-capacitating medium. None of these triggered sperm release or hyperactivated motility. Interestingly, native FF was detrimental to sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated FF at pH 7.9 but not pH 7.4 showed Ca(2+)-dependent hypermotility. Fluo-4 AM staining of sperm showed elevated cytoplasmic Ca(2+) in hyperactivated stallion spermatozoa exposed to treated FF at pH 7.9 compared to a modest response in defined capacitating conditions at pH 7.9 and no response in treated FF at pH 7.4. Moreover, 1 h incubation in alkaline, treated FF induced protein tyrosine phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein tyrosine phosphorylation and all were acrosome-intact, but capable of acrosomal exocytosis in response to calcium ionophore. We conclude that, in the presence of elevated pH and extracellular Ca(2+), a heat-resistant, hydrophilic, <30 kDa component of FF can trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca(2+) and hyperactivated motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium.


Assuntos
Adesão Celular , Células Epiteliais/metabolismo , Líquido Folicular/metabolismo , Cavalos/fisiologia , Oviductos/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Reação Acrossômica , Animais , Cálcio/metabolismo , Ionóforos de Cálcio/farmacologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Fosforilação , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Fatores de Tempo , Técnicas de Cultura de Tecidos , Tirosina/metabolismo
7.
Biol Reprod ; 93(1): 23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26085521

RESUMO

Coincubating equine gametes in the presence of procaine has been reported to facilitate in vitro fertilization, with cleavage rates exceeding 60%. We report that while procaine does trigger sperm hyperactivation, it independently induces cleavage of equine oocytes. First, we found that procaine (1-5 mM) did not facilitate stallion sperm penetration of equine oocytes but instead induced sperm-independent oocyte cytokinesis in the absence of the second polar body extrusion. Indeed, 56 ± 4% of oocytes cleaved within 2.5 days of exposure to 2.5 mM procaine regardless of sperm presence. However, the cleaved oocytes did not develop beyond 8 to 16 cells, and the daughter cells either lacked nuclei or contained aberrant, condensed DNA fragments. By contrast, intracytoplasmic sperm injection (ICSI) was followed by second polar body extrusion and formation of normal blastocysts. Moreover, neither the calcium oscillations detectable using fura-2 AM staining nor the cortical granule reaction visualized by LCA-FITC staining, after oocyte activation induced by ICSI or ionomycin treatment, were detected after exposing oocytes to 2.5 mM procaine. Instead, procaine initiated an ooplasmic alkalinization, detectable by BCECF-AM staining that was not observed after other treatments. This alkalinization was followed, after an additional 18 h of incubation, by cortical F-actin depolymerization, as demonstrated by reduced actin phalloidin-FITC staining intensity, that resembled preparation for cytokinesis in ICSI-fertilized zygotes. Overall, we conclude that procaine induces cytokinesis in equine oocytes accompanied by aberrant chromatin condensation and division; this explains why embryos produced after exposing equine oocytes to procaine fail to develop beyond the 8- to 16-cell stage.


Assuntos
Citocinese/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Procaína/farmacologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Cromatina/metabolismo , Feminino , Fertilização in vitro/veterinária , Cavalos , Concentração de Íons de Hidrogênio , Masculino , Oócitos/metabolismo , Injeções de Esperma Intracitoplásmicas/veterinária , Espermatozoides/fisiologia
8.
Reprod Fertil Dev ; 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25751414

RESUMO

Steroids play an important role in mammalian reproduction and early pregnancy. Although systemic changes in steroid concentrations have been well documented, it is not clear how these correlate with local steroid concentrations in the genital tract. We hypothesised that, in the horse, the preimplantation embryo may be subjected to high local steroid concentrations for several days. Therefore, we measured progesterone, 17-hydroxyprogesterone, 17?-oestradiol, testosterone and 17?-testosterone concentrations in equine oviductal tissue by ultra-HPLC coupled with tandem mass spectrometry, and progesterone, 17?-oestradiol, oestrone and testosterone concentrations in oviduct fluid by radioimmunoassay, with reference to cycle stage and side of ovulation. Progesterone concentrations were high in oviductal tissue and fluid ipsilateral to the ovulation side during dioestrus, whereas other steroid hormone concentrations were not influenced by the side of ovulation. These results suggest that the high ipsilateral progesterone concentration is caused by: (1) contributions from the follicular fluid in the oviduct and diffusion of follicular fluid steroids after ovulation; (2) local transfer of steroids via blood or lymph; (3) local synthesis of progesterone in the oviduct, as evidenced by the expression of steroidogenic enzymes; and (4) a paracrine contribution from follicular cells. These data provide a basis for the study of the importance of endocrine and paracrine signalling during early embryonic development in the horse.

9.
Biol Reprod ; 91(1): 13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24829033

RESUMO

Sperm-oviduct binding is an essential step in the capacitation process preparing the sperm for fertilization in several mammalian species. In many species, capacitation can be induced in vitro by exposing spermatozoa to bicarbonate, Ca(2+), and albumin; however, these conditions are insufficient in the horse. We hypothesized that binding to the oviduct epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. Sperm-oviduct binding was established by coincubating equine oviduct explants for 2 h with stallion spermatozoa (2 × 10(6) spermatozoa/ml), during which it transpired that the highest density (per mm(2)) of oviduct-bound spermatozoa was achieved under noncapacitating conditions. In subsequent experiments, sperm-oviduct incubations were performed for 6 h under noncapacitating versus capacitating conditions. The oviduct-bound spermatozoa showed a time-dependent protein tyrosine phosphorylation response, which was not observed in unbound spermatozoa or spermatozoa incubated in oviduct explant conditioned medium. Both oviduct-bound and unbound sperm remained motile with intact plasma membrane and acrosome. Since protein tyrosine phosphorylation can be induced in equine spermatozoa by media with high pH, the intracellular pH (pHi) of oviduct explant cells and bound spermatozoa was monitored fluorometrically after staining with BCECF-AM dye. The epithelial secretory cells contained large, alkaline vesicles. Moreover, oviduct-bound spermatozoa showed a gradual increase in pHi, presumably due to an alkaline local microenvironment created by the secretory epithelial cells, given that unbound spermatozoa did not show pHi changes. Thus, sperm-oviduct interaction appears to facilitate equine sperm capacitation by creating an alkaline local environment that triggers intracellular protein tyrosine phosphorylation in bound sperm.


Assuntos
Oviductos/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Tirosina/metabolismo , Animais , Feminino , Fertilização/fisiologia , Cavalos , Masculino , Fosforilação , Proteínas Tirosina Quinases/metabolismo
10.
Reprod Fertil Dev ; 26(7): 954-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23902648

RESUMO

Equine embryos remain for 6 days in the oviduct and thus there is a need for an in vitro model to study embryo-oviductal interactions in the horse, since this subtle way of communication is very difficult to analyse in vivo. Until now, no equine oviduct explant culture model has been characterised both morphologically and functionally. Therefore, we established a culture system for equine oviduct explants that maintained epithelial morphology during 6 days of culture, as revealed by light microscopy and transmission electron microscopy. We demonstrated the presence of highly differentiated, tall columnar, pseudostratified epithelium with basal nuclei, numerous nucleoli, secretory granules and apical cilia, which is very similar to the in vivo situation. Both epithelium and stromal cells originating from the lamina propria are represented in the explants. Moreover, at least 98% of the cells remained membrane intact and fewer than 2% of the cells were apoptotic after 6 days of culture. Although dark-cell degeneration, which is a hypoxia-related type of cell death, was observed in the centre of the explants, quantitative real-time PCR failed to detect upregulation of the hypoxia-related marker genes HIF1A, VEGFA, uPA, GLUT1 and PAI1. Since the explants remained morphologically and functionally intact and since the system is easy to set up, it appears to be an excellent tool for proteome, transcriptome and miRNome analysis in order to unravel embryo-maternal interactions in the horse.


Assuntos
Técnicas de Cultura de Células/veterinária , Embrião de Mamíferos/fisiologia , Tubas Uterinas/fisiologia , Cavalos/embriologia , Cavalos/fisiologia , Modelos Biológicos , Animais , Apoptose , Técnicas de Cultura de Células/métodos , Hipóxia Celular/genética , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Tubas Uterinas/citologia , Feminino , Expressão Gênica , Glucose/metabolismo , Marcação In Situ das Extremidades Cortadas , Ácido Láctico/metabolismo , Microscopia Eletrônica de Transmissão , Mucosa/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Células Estromais/fisiologia , Células Estromais/ultraestrutura , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...