Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463725

RESUMO

TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Doença/genética , Receptores Nucleares Órfãos/fisiologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Neurogênese/genética , Receptores Nucleares Órfãos/genética
2.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33959755

RESUMO

Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite 27-hydroxycholesterol (27HC) as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and as a liver X receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells with neutrophils (polymorphonuclear neutrophils; PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that includes exosomes. The resulting EVs had a size distribution that was skewed slightly larger than EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across 3 different subtypes: primary murine PMNs, RAW264.7 monocytic cells, and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in 2 different syngeneic models, demonstrating the potential role of 27HC-induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages, and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their protumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV-treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively, however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Assuntos
Hidroxicolesteróis/farmacologia , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Moduladores de Receptor Estrogênico/farmacologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Feminino , Hipercolesterolemia/complicações , Camundongos , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neutrófilos/fisiologia , Neutrófilos/ultraestrutura , Células RAW 264.7
3.
Cancer Lett ; 493: 266-283, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32861706

RESUMO

Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Colestanotriol 26-Mono-Oxigenase/genética , Hidroxicolesteróis/efeitos adversos , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Células Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacos
4.
Endocr Relat Cancer ; 26(7): 659-675, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048561

RESUMO

There is an urgent need for more effective strategies to treat ovarian cancer. Elevated cholesterol levels are associated with a decreased progression-free survival time (PFS) while statins are protective. 27-Hydroxycholesterol (27HC), a primary metabolite of cholesterol, has been shown to modulate the activities of the estrogen receptors (ERs) and liver x receptors (LXRs) providing a potential mechanistic link between cholesterol and ovarian cancer progression. We found that high expression of CYP27A1, the enzyme responsible for the synthesis of 27HC, was associated with decreased PFS, while high expression of CYP7B1, responsible for 27HC catabolism, was associated with increased PFS. However, 27HC decreased the cellular proliferation of various ovarian cancer cell lines in an LXR-dependent manner. Intriguingly, ID8 grafts were unable to effectively establish in CYP27A1-/- mice, indicating involvement of the host environment. Tumors from mice treated with 27HC had altered myeloid cell composition, and cells from the marrow stem cell lineage were found to be responsible for the effects in CYP27A1-/- mice. While inhibition of CYP27A1 or immune checkpoint did not significantly alter tumor size, their combination did, thereby highlighting this axis as a therapeutic target.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Neoplasias Ovarianas/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Colestanotriol 26-Mono-Oxigenase/deficiência , Colesterol na Dieta/efeitos adversos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Camundongos , Células Supressoras Mieloides/citologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Intervalo Livre de Progressão , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...