Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(12): 764-773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581456

RESUMO

Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética
2.
Alcohol Clin Exp Res ; 42(11): 2186-2195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204234

RESUMO

BACKGROUND: Ventral tegmental area (VTA) GABA neurons have been heavily implicated in alcohol reinforcement and reward. In animals that self-administer alcohol, VTA GABA neurons exhibit increased excitability that may contribute to alcohol's rewarding effects. The present study investigated the effects of acute and chronic ethanol exposure on glutamate (GLU) synaptic transmission to VTA GABA neurons. METHODS: Whole-cell recordings of evoked, spontaneous, and miniature excitatory postsynaptic currents (eEPSCs, sEPSCs, and mEPSCs, respectively) were performed on identified GABA neurons in the VTA of GAD67-GFP+ transgenic mice. Three ethanol exposure paradigms were used: acute ethanol superfusion; a single ethanol injection; and chronic vapor exposure. RESULTS: Acute ethanol superfusion increased the frequency of EPSCs but inhibited mEPSC frequency and amplitude. During withdrawal from a single injection of ethanol, the frequency of sEPSCs was lower than saline controls. There was no difference in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio between neurons following withdrawal from a single exposure to ethanol. However, following withdrawal from chronic ethanol, sEPSCs and mEPSCs had a greater frequency than air controls. There was no difference in AMPA/NMDA ratio following chronic ethanol. CONCLUSIONS: These results suggest that presynaptic mechanisms involving local circuit GLU neurons, and not GLU receptors, contribute to adaptations in VTA GABA neuron excitability that accrue to ethanol exposure, which may contribute to the rewarding properties of alcohol via their regulation of mesolimbic dopamine transmission.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Glutamatos/fisiologia , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Animais , Dopamina/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Glutamato Descarboxilase/genética , Masculino , Camundongos , Técnicas de Patch-Clamp , Síndrome de Abstinência a Substâncias/fisiopatologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
Front Neurosci ; 12: 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556175

RESUMO

The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice. In the acute condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after a single in vivo dose of saline or ethanol. In the chronic condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after either 2 weeks of twice-daily IP ethanol or saline or following exposure to chronic intermittent ethanol (CIE) vapor or air for 3 weeks. VTA GABA neuron firing rate was more sensitive to muscimol than DA neuron firing rate. VTA GABA neurons, but not DA neurons, were resistant to the inhibitory effects of muscimol recorded 24 h after a single ethanol injection or chronic ethanol exposure. Administration of the NMDA receptor antagonist MK-801 before ethanol injection restored the sensitivity of VTA GABA neurons to muscimol inhibition. Seven days after ethanol exposure, VTA GABA neuron firing rate was again susceptible to muscimol's inhibitory effects in the acute condition, but the resistance persisted in the chronic condition. These findings suggest that VTA GABA neurons exclusively undergo a shift in GABA(A) receptor function following acute and chronic exposure. There appears to be transient GABA(A) receptor-mediated plasticity after a single exposure to ethanol that is mediated by NMDA glutamate receptors. In addition, the resistance to muscimol inhibition in VTA GABA neurons persists in the dependent condition, which may contribute to the the hyperexcitability of VTA GABA neurons and inhibition of VTA DA neurons during withdrawal as well as the motivation to seek alcohol.

4.
Addict Biol ; 23(5): 1079-1093, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28901722

RESUMO

Dopamine (DA) neuron excitability is regulated by inhibitory GABAergic synaptic transmission and modulated by nicotinic acetylcholine receptors (nAChRs). The aim of this study was to evaluate the role of α6 subunit-containing nAChRs (α6*-nAChRs) in acute ethanol effects on ventral tegmental area (VTA) GABA and DA neurons. α6*-nAChRs were visualized on GABA terminals on VTA GABA neurons, and α6*-nAChR transcripts were expressed in most DA neurons, but only a minority of VTA GABA neurons from GAD67 GFP mice. Low concentrations of ethanol (1-10 mM) enhanced GABAA receptor (GABAA R)-mediated spontaneous and evoked inhibition with blockade by selective α6*-nAChR antagonist α-conotoxins (α-Ctxs) and lowered sensitivity in α6 knock-out (KO) mice. Ethanol suppression of VTA GABA neuron firing rate in wild-type mice in vivo was significantly reduced in α6 KO mice. Ethanol (5-100 mM) had no effect on optically evoked GABAA R-mediated inhibition of DA neurons, and ethanol enhancement of VTA DA neuron firing rate at high concentrations was not affected by α-Ctxs. Ethanol conditioned place preference was reduced in α6 KO mice compared with wild-type controls. Taken together, these studies indicate that relatively low concentrations of ethanol act through α6*-nAChRs on GABA terminals to enhance GABA release onto VTA GABA neurons, in turn to reduce GABA neuron firing, which may lead to VTA DA neuron disinhibition, suggesting a possible mechanism of action of alcohol and nicotine co-abuse.


Assuntos
Etanol/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Etanol/metabolismo , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
5.
Addict Biol ; 22(5): 1304-1315, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27417190

RESUMO

Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Óxidos N-Cíclicos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Núcleo Accumbens/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...