Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 189(Supplement_3): 568-578, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160811

RESUMO

INTRODUCTION: The Control Network Neuromodulation to Enhance Cognitive Training in Complex Traumatic Brain Injury (CONNECT-TBI) study is an ongoing randomized, double-blinded, sham-controlled multisite clinical trial to determine the enhancing effects of noninvasive neuromodulation when paired with cognitive training in military participants (Veterans and active duty) with mild TBI. Attention Process Training-III (APT-III) was selected for its strong evidence base, manualized procedures, and computerized program. However, many aspects of APT-III that make it ideal for personalization make it less ideal for reliable implementation across participants, clinicians/technicians, and sites. The purpose of this feature article is to highlight APT-III procedures that require additional standardization for reliable administration across participants and sites. MATERIALS AND METHODS: Ten studies using APT-III were reviewed for methodology of APT-III administration. The manual was also scrutinized; aspects of administration that involved clinical decision-making, subjectivity, flexibility, and/or that were identified by the APT-III developers as areas in need of "empirical evaluation" were flagged by clinicians. Literature and manual review findings were presented to the team for discussion and solution-finding. The authors created and refined a standardized process that would allow participants to move through APT-III training, including task movement algorithms and new materials drafts. Refining of algorithms and drafts continued until there was a consensus from team members. RESULTS: Many gray areas were identified, but we will limit our reporting to focus on (1) dosage, (2) adaptation, (3) metacognitive strategy instruction, and (4) goal attainment scaling. We present APT-III manual details, literature review findings, and CONNECT-TBI decisions and materials for each of these areas of focus. CONCLUSIONS: We have highlighted some of the major gray areas of APT-III administration so that fellow researchers can understand the need to take similar steps in clinical trials using APT-III. We provide examples of our standardization process and resultant rules and materials. Our algorithm, based on prior studies using the APT-III and our own iterative adjustments, allows for adjustment of the difficulty and speed of the training tasks (but within certain parameters) in order to achieve the best balance between individualization and consistency across participants and sites. We provide an example of a workflow and reporting process for future studies.


Assuntos
Atenção , Humanos , Atenção/fisiologia , Método Duplo-Cego , Lesões Encefálicas Traumáticas/terapia
2.
Diagn Microbiol Infect Dis ; 110(1): 116404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38896889

RESUMO

BACKGROUND: Common biologic samples used to diagnose COVID-19 include nasopharyngeal, nasal, or oropharyngeal swabs, and salivary samples. The performance characteristics of a sucked "lollipop" swab to detect SARS-CoV-2 virus is assessed in four small sub-studies. METHODS: In each sub-study, a flocked swab was sucked for 20 s and submitted for PCR detection of SARS-CoV-2 virus. RESULTS: Across all studies, 52 of 69 (75.4%) COVID-19 positive participants had positive "lollipop" swabs. Twelve of the 17 COVID-19 positive participants with negative "lollipop" swabs had known corresponding cycle threshold values of >37 from their nasal/nasopharyngeal swabs, an indication of low viral load at time of sampling. In a paired samples sub-study, the sensitivity and specificity of the "lollipop" swabs were 100% and 98%. CONCLUSIONS: "Lollipop" swabs performed satisfactorily especially in individuals with acute infection of COVID-19. "Lollipop" swabs are a simple method of sample collection for detecting SARS-CoV-2 virus and warrants additional consideration.


Assuntos
COVID-19 , Nasofaringe , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Manejo de Espécimes/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Nasofaringe/virologia , Carga Viral/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Teste para COVID-19/métodos , Orofaringe/virologia , Idoso , Teste de Ácido Nucleico para COVID-19/métodos
3.
J Hosp Med ; 19(1): 35-39, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37880922

RESUMO

Since most care for children with medical complexity (CMC) is delivered daily in communities by multiple caregiving individuals, that is, caregiving networks, tools to assess and intervene across these networks are needed. This study evaluated the feasibility of applying social network analysis (SNA) to describe caregiving networks. Because hospitalization is among the most frequently used outcomes for CMC, exploratory correlations between network characteristics and CMC hospital use were evaluated. Within 3 weeks, the goal network enrollment was achieved, and all feasibility measures were favorable. Network characteristics correlated with hospital use, that is, smaller, denser networks, with more closed-loop communication correlated with fewer hospital days. Networks with more professional caregivers also correlated with fewer hospital days. SNA is a feasible tool to study CMC caregiving networks. Preliminary data support rigorous hypothesis testing using SNA methods. Network-based interventions to improve CMC health may be an important future direction.


Assuntos
Cuidadores , Análise de Rede Social , Criança , Humanos , Estudos de Viabilidade , Hospitalização , Hospitais
4.
BMJ Open Qual ; 12(4)2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160018

RESUMO

BACKGROUND: Communication gaps, whether incomplete or fragmented communication, have been the cause of many disasters in human civilisation. Coordination of healthcare is directly related to proper communication and handoffs among multidisciplinary teams throughout multiple shifts during a patient's hospitalisation. LOCAL PROBLEM: Patient surveys and direct patient feedback at Mayo Clinic Health System in Mankato, Minnesota, indicated that patient communication with physicians and nurses had declined in 2017 and 2018. Viewing this as an opportunity for improvement, our leadership initiated several changes to increase physician and nurse communication with patients, which resulted in no notable improvements. METHODS: A systematic quality improvement approach was implemented by using Six Sigma methodology. Stakeholders from multidisciplinary teams were assembled as the project team. The five steps of Six Sigma methodology (Define, Measure, Analyse, Improve and Control) were followed to create a quality improvement intervention. INTERVENTION: We developed a standardised and easy-to-use bedside team rounding tool to improve patient communication with physicians and nurses. RESULTS: Postintervention patient satisfaction top-box scores exceeded target improvements for both physician (from 78.5% to 82.0%, p<0.01) and nurse (from 80.5% to 83.1%, p=0.04) communication domains. Physicians had a 33-point increase in percentile rank (from 41st to 74th percentile rank), and nurses had a 25-point increase in percentile rank (from 59th to 84th percentile rank). This increase in communication ranked our institution at the top of national benchmark organisations. CONCLUSIONS: Overwhelmingly positive patient feedback was achieved, and postintervention employee satisfaction was primarily positive when compared with preintervention satisfaction.


Assuntos
Satisfação do Paciente , Melhoria de Qualidade , Humanos , Gestão da Qualidade Total , Hospitais Comunitários , Comunicação
5.
Microbiol Spectr ; 9(2): e0051921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34549997

RESUMO

To combat infections, the mammalian host limits availability of essential transition metals such as iron (Fe), zinc (Zn), and manganese (Mn) in a strategy termed "nutritional immunity." The innate immune protein calprotectin (CP) contributes to nutritional immunity by sequestering these metals to exert antimicrobial activity against a broad range of microbial pathogens. One such pathogen is Pseudomonas aeruginosa, which causes opportunistic infections in vulnerable populations, including individuals with cystic fibrosis. CP was previously shown to withhold Fe(II) and Zn(II) from P. aeruginosa and induce Fe and Zn starvation responses in this pathogen. In this work, we performed quantitative, label-free proteomics to further elucidate how CP impacts metal homeostasis pathways in P. aeruginosa. We report that CP induces an incomplete Fe starvation response, as many Fe-containing proteins that are repressed by Fe limitation are not affected by CP treatment. The Zn starvation response elicited by CP seems to be more complete than the Fe starvation response and includes increases in Zn transporters and Zn-independent proteins. CP also induces the expression of membrane-modifying proteins, and metal depletion studies indicate this response results from the sequestration of multiple metals. Moreover, the increased expression of membrane-modifying enzymes upon CP treatment correlates with increased tolerance to polymyxin B. Thus, the response of P. aeruginosa to CP treatment includes both single- and multimetal starvation responses and includes many factors related to virulence potential, broadening our understanding of this pathogen's interaction with the host. IMPORTANCE Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed "nutritional immunity." While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation. Using an unbiased label-free proteomics approach, we demonstrate that multimetal withholding by CP induces a regulatory response that is not merely additive of individual metal starvation responses, including the induction of lipid A modification proteins.


Assuntos
Imunidade Inata , Complexo Antígeno L1 Leucocitário/imunologia , Complexo Antígeno L1 Leucocitário/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Transporte , Caseínas , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases , Polimixina B , Pseudomonas aeruginosa/metabolismo , Virulência/efeitos dos fármacos , Zinco
6.
J Biol Chem ; 296: 100160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273016

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that cause severe infections in immunocompromised individuals and patients with cystic fibrosis. Both P. aeruginosa and S. aureus require iron to infect the mammalian host. To obtain iron, these pathogens may rely on siderophore-mediated ferric iron uptake, ferrous iron uptake, or heme uptake at different points during infection. The preferred iron source depends on environmental conditions, including the presence of iron-sequestering host-defense proteins. Here, we investigate how the presence of heme, a highly relevant iron source during infection, affects bacterial responses to iron withholding by the innate immune protein calprotectin (CP). Prior work has shown that P. aeruginosa is starved of iron in the presence of CP. We report that P. aeruginosa upregulates expression of heme uptake machinery in response to CP. Furthermore, we show that heme protects P. aeruginosa from CP-mediated inhibition of iron uptake and iron-starvation responses. We extend our study to a second bacterial pathogen, S. aureus, and demonstrate that CP also inhibits iron uptake and induces iron-starvation responses by this pathogen. Similarly to P. aeruginosa, we show that heme protects S. aureus from CP-mediated inhibition of iron uptake and iron-starvation responses. These findings expand our understanding of microbial responses to iron sequestration by CP and highlight the importance of heme utilization for bacterial adaptation to host iron-withholding strategies.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Heme/metabolismo , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/biossíntese , Staphylococcus aureus/metabolismo , Adaptação Fisiológica , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/farmacologia , Interações Hospedeiro-Patógeno/genética , Humanos , Ferro/farmacologia , Complexo Antígeno L1 Leucocitário/farmacologia , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Sideróforos/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Estresse Fisiológico
7.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30962354

RESUMO

Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/genética , Zinco/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Proteômica , Pseudomonas aeruginosa/genética
8.
J Biol Chem ; 294(10): 3549-3562, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622135

RESUMO

Most microbial pathogens have a metabolic iron requirement, necessitating the acquisition of this nutrient in the host. In response to pathogen invasion, the human host limits iron availability. Although canonical examples of nutritional immunity are host strategies that limit pathogen access to Fe(III), little is known about how the host restricts access to another biologically relevant oxidation state of this metal, Fe(II). This redox species is prevalent at certain infection sites and is utilized by bacteria during chronic infection, suggesting that Fe(II) withholding by the host may be an effective but unrecognized form of nutritional immunity. Here, we report that human calprotectin (CP; S100A8/S100A9 or MRP8/MRP14 heterooligomer) inhibits iron uptake and induces an iron starvation response in Pseudomonas aeruginosa cells by sequestering Fe(II) at its unusual His6 site. Moreover, under aerobic conditions in which the Fe(III) oxidation state is favored, Fe(II) withholding by CP was enabled by (i) its ability to stabilize this redox state in solution and (ii) the production and secretion of redox-active, P. aeruginosa-produced phenazines, which reduce Fe(III) to Fe(II). Analyses of the interplay between P. aeruginosa secondary metabolites and CP indicated that Fe(II) withholding alters P. aeruginosa physiology and expression of virulence traits. Lastly, examination of the effect of CP on cell-associated metal levels in diverse human pathogens revealed that CP inhibits iron uptake by several bacterial species under aerobic conditions. This work implicates CP-mediated Fe(II) sequestration as a component of nutritional immunity in both aerobic and anaerobic milieus during P. aeruginosa infection.


Assuntos
Imunidade Inata , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/biossíntese , Transporte Biológico/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Oligopeptídeos/biossíntese , Fenazinas/farmacologia , Pseudomonas aeruginosa/genética
9.
Am J Pharm Educ ; 83(10): 7595, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32001891

RESUMO

The 2018-2019 Research and Graduate Affairs Committee (RGAC) was charged with critically evaluating the leadership development support necessary for pharmacy researchers, including postdoctoral trainees, to develop the skills needed to build and sustain successful research programs and analyzing how well those needs are being met by existing programs both within AACP and at other organizations. The RGAC identified a set of skills that could reasonably be expected to provide the necessary foundation to successfully lead a research team and mapped these skills to the six domains of graduate education in the pharmaceutical sciences established by the 2016-2017 RGAC (Table 1). In addition, the RGAC identified competency in team science and the bench-to-bedside-to-beyond translational spectrum as being critical elements of research leadership. The universality of these skills and their value prompted the RGAC to make two related recommendations to AACP: [Table: see text] Recommendation 1: AACP should promote the development and use of strategies to ensure intentional and ongoing professional development, such as Individual Development Plans. Recommendation 2: AACP should explore collaborative research leadership development opportunities between faculty at research-intensive institutions and faculty at non-research-intensive institutions. The RGAC also examined programs available at AACP and other national organizations that could help pharmacy faculty develop foundational skills for research leadership (Table 2). The RGAC administered two surveys, one to administrators responsible for research at colleges and schools of pharmacy and one to faculty members at pharmacy schools, to gather information about training needs, programming and support available for research leadership development. Administrators and faculty agreed that research is important for career advancement for faculty, and almost all administrators reported their schools provide funds, release time and mentoring for participation in research career development. However, a lack of faculty awareness regarding programs and available support may be a barrier to participation. The RGAC therefore makes two recommendations and one suggestion related to AACP programming: [Table: see text] Recommendation 3: AACP should expand research leadership development opportunities building from existing programs such as ALFP and AACP Catalyst, with consideration placed on developing programs that promote collaborative research. Recommendation 4: AACP should collaborate with other professional organizations to expand research leadership development opportunities across the academy. Suggestion 1: Colleges and schools of pharmacy should take a proactive role in promoting and facilitating research leadership development for faculty. The RGAC separately examined the research leadership development needs of postdoctoral trainees, recognizing the distinct needs of trainees along the PhD or PhD/PharmD, PharmD/fellowship, and PharmD/residency paths. A review of organizational resources and opportunities for post-doctoral trainees available from national organizations, including AACP, was undertaken (Table 5). The RGAC sees an opportunity for AACP to foster research development of those trainees whose career track will likely be in clinical practice and makes one recommendation and one suggestion related to postdoctoral trainees: Recommendation 5: AACP should support and/or develop programs and activities for pharmacy residents seeking to transition into faculty positions to acquire the skills necessary to develop and lead research programs. Suggestion 2: Colleges and schools of pharmacy should include postdoctoral trainees with academic interests in research leadership development opportunities available to junior faculty. In addition, the RGAC proposed one policy statement that was adopted July 2019 by the AACP House of Delegates: Policy Statement: AACP recognizes the positive role that research leadership development can play in the success of early and mid-career faculty.


Assuntos
Educação de Pós-Graduação em Farmácia/organização & administração , Docentes de Farmácia/organização & administração , Pesquisa em Farmácia/organização & administração , Faculdades de Farmácia/organização & administração , Currículo , Humanos , Liderança , Farmácia/organização & administração
10.
Biotechnol Biofuels ; 11: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467823

RESUMO

BACKGROUND: Xyloglucan (XyG) is a ubiquitous and fundamental polysaccharide of plant cell walls. Due to its structural complexity, XyG requires a combination of backbone-cleaving and sidechain-debranching enzymes for complete deconstruction into its component monosaccharides. The soil saprophyte Cellvibrio japonicus has emerged as a genetically tractable model system to study biomass saccharification, in part due to its innate capacity to utilize a wide range of plant polysaccharides for growth. Whereas the downstream debranching enzymes of the xyloglucan utilization system of C. japonicus have been functionally characterized, the requisite backbone-cleaving endo-xyloglucanases were unresolved. RESULTS: Combined bioinformatic and transcriptomic analyses implicated three glycoside hydrolase family 5 subfamily 4 (GH5_4) members, with distinct modular organization, as potential keystone endo-xyloglucanases in C. japonicus. Detailed biochemical and enzymatic characterization of the GH5_4 modules of all three recombinant proteins confirmed particularly high specificities for the XyG polysaccharide versus a panel of other cell wall glycans, including mixed-linkage beta-glucan and cellulose. Moreover, product analysis demonstrated that all three enzymes generated XyG oligosaccharides required for subsequent saccharification by known exo-glycosidases. Crystallographic analysis of GH5D, which was the only GH5_4 member specifically and highly upregulated during growth on XyG, in free, product-complex, and active-site affinity-labelled forms revealed the molecular basis for the exquisite XyG specificity among these GH5_4 enzymes. Strikingly, exhaustive reverse-genetic analysis of all three GH5_4 members and a previously biochemically characterized GH74 member failed to reveal a growth defect, thereby indicating functional compensation in vivo, both among members of this cohort and by other, yet unidentified, xyloglucanases in C. japonicus. Our systems-based analysis indicates distinct substrate-sensing (GH74, GH5E, GH5F) and attack-mounting (GH5D) functions for the endo-xyloglucanases characterized here. CONCLUSIONS: Through a multi-faceted, molecular systems-based approach, this study provides a new insight into the saccharification pathway of xyloglucan utilization system of C. japonicus. The detailed structural-functional characterization of three distinct GH5_4 endo-xyloglucanases will inform future bioinformatic predictions across species, and provides new CAZymes with defined specificity that may be harnessed in industrial and other biotechnological applications.

11.
Environ Microbiol ; 19(12): 5025-5039, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29052930

RESUMO

Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), ß(1→3)/ß(1→4) mixed-linkage glucan (MLG) and ß(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse ß-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these ß-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports ß(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives ß(1→3) glucan utilization. Finally, Bgl3D is the crucial ß-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Cellvibrio/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Biomassa , Cellvibrio/metabolismo , Glucanos/metabolismo , Lignina/metabolismo , Xilanos/metabolismo
12.
Mol Microbiol ; 104(2): 294-305, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28118504

RESUMO

Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data that suggests that CAZymes that have overlapping enzymatic activities can have unique, non-overlapping biological functions in the cell. Our comprehensive study to understand cellodextrin utilization in the soil saprophyte Cellvibrio japonicus found that only one of four predicted ß-glucosidases is required in a physiological context. Gene deletion analysis indicated that only the cel3B gene product is essential for efficient cellodextrin utilization in C. japonicus and is constitutively expressed at high levels. Interestingly, expression of individual ß-glucosidases in Escherichia coli K-12 enabled this non-cellulolytic bacterium to be fully capable of using cellobiose as a sole carbon source. Furthermore, enzyme kinetic studies indicated that the Cel3A enzyme is significantly more active than the Cel3B enzyme on the oligosaccharides but not disaccharides. Our approach for parsing related CAZymes to determine actual physiological roles in the cell can be applied to other polysaccharide-degradation systems.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Celulases/fisiologia , Cellvibrio/fisiologia , Celulases/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Dissacarídeos/metabolismo , Enzimas , Escherichia coli/genética , Cinética , Polissacarídeos/metabolismo , Análise de Sistemas
13.
J Microbiol Methods ; 130: 136-143, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27664455

RESUMO

Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. We applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.


Assuntos
Bactérias/crescimento & desenvolvimento , Biomassa , Contaminação de Equipamentos , Impressão Tridimensional/instrumentação , Solubilidade , Bactérias/metabolismo , Metabolismo dos Carboidratos , Celulose/metabolismo , Cellvibrio/genética , Cellvibrio/crescimento & desenvolvimento , Cellvibrio/metabolismo , Desenho de Equipamento/economia , Desenho de Equipamento/instrumentação , Lignina/química , Viabilidade Microbiana , Mutação , Nylons/química , Espectrofotometria , Aço Inoxidável/química , Esterilização , Xilanos/metabolismo , Zea mays/química
14.
J Immunol ; 196(8): 3470-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936880

RESUMO

Tumor-induced myeloid-derived suppressor cells (MDSC) contribute to immune suppression in tumor-bearing individuals and are a major obstacle to effective immunotherapy. Reactive oxygen species (ROS) are one of the mechanisms used by MDSC to suppress T cell activation. Although ROS are toxic to most cells, MDSC survive despite their elevated content and release of ROS. NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates a battery of genes that attenuate oxidative stress. Therefore, we hypothesized that MDSC resistance to ROS may be regulated by Nrf2. To test this hypothesis, we used Nrf2(+/+)and Nrf2(-/-)BALB/c and C57BL/6 mice bearing 4T1 mammary carcinoma and MC38 colon carcinoma, respectively. Nrf2 enhanced MDSC suppressive activity by increasing MDSC production of H2O2, and it increased the quantity of tumor-infiltrating MDSC by reducing their oxidative stress and rate of apoptosis. Nrf2 did not affect circulating levels of MDSC in tumor-bearing mice because the decreased apoptotic rate of tumor-infiltrating MDSC was balanced by a decreased rate of differentiation from bone marrow progenitor cells. These results demonstrate that Nrf2 regulates the generation, survival, and suppressive potency of MDSC, and that a feedback homeostatic mechanism maintains a steady-state level of circulating MDSC in tumor-bearing individuals.


Assuntos
Apoptose/imunologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/citologia , Fator 2 Relacionado a NF-E2/imunologia , Evasão Tumoral/imunologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Neoplasias do Colo/patologia , Feminino , Peróxido de Hidrogênio/metabolismo , Tolerância Imunológica/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Células-Tronco/citologia
15.
J Biol Chem ; 291(14): 7300-12, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26858252

RESUMO

Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and ß-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles.


Assuntos
Cellvibrio/enzimologia , Quitina/química , Oxigenases de Função Mista/química , Quitina/metabolismo , Cristalografia por Raios X , Oxigenases de Função Mista/metabolismo , Estrutura Terciária de Proteína
16.
Appl Environ Microbiol ; 81(17): 5968-75, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116676

RESUMO

The depolymerization of the recalcitrant polysaccharides found in lignocellulose has become an area of intense interest due to the role of this process in global carbon cycling, human gut microbiome nutritional contributions, and bioenergy production. However, underdeveloped genetic tools have hampered study of bacterial lignocellulose degradation, especially outside model organisms. In this report, we describe an in-frame deletion strategy for the Gram-negative lignocellulose-degrading bacterium Cellvibrio japonicus. This method leverages optimized growth conditions for conjugation and sacB counterselection for the generation of markerless in-frame deletions. This method produces mutants in as few as 8 days and allows for the ability to make multiple gene deletions per strain. It is also possible to remove large sections of the genome, as shown in this report with the deletion of the nine-gene (9.4-kb) gsp operon in C. japonicus. We applied this system to study the complex phenotypes of cellulose degradation in C. japonicus. Our data indicated that a Δcel5B Δcel6A double mutant is crippled for cellulose utilization, more so than by either single mutation alone. Additionally, we deleted individual genes in the two-gene cbp2ED operon and showed that both genes contribute to cellulose degradation in C. japonicus. Overall, these described techniques substantially enhance the utility of C. japonicus as a model system to study lignocellulose degradation.


Assuntos
Proteínas de Bactérias/genética , Celulose/metabolismo , Cellvibrio/genética , Cellvibrio/metabolismo , Deleção de Sequência , Proteínas de Bactérias/metabolismo , Cellvibrio/crescimento & desenvolvimento , Lignina/metabolismo , Fenótipo
17.
Am J Physiol Cell Physiol ; 307(10): C939-50, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25186012

RESUMO

Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue.


Assuntos
Acidose/metabolismo , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Fosfatos/metabolismo , Animais , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
18.
Appl Environ Microbiol ; 80(8): 2429-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509921

RESUMO

Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.


Assuntos
Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Medicago sativa/microbiologia , Percepção de Quorum , Sinorhizobium meliloti/genética , Simbiose , Fatores de Transcrição/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/biossíntese , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Perfilação da Expressão Gênica , Microscopia Eletrônica de Transmissão , Nodulação , Sinorhizobium meliloti/fisiologia , Sinorhizobium meliloti/ultraestrutura
19.
Am J Physiol Cell Physiol ; 306(7): C670-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24452378

RESUMO

Intense muscle contraction induces high rates of ATP hydrolysis with resulting increases in Pi, H(+), and ADP, factors thought to induce fatigue by interfering with steps in the cross-bridge cycle. Force inhibition is less at physiological temperatures; thus the role of low pH in fatigue has been questioned. Effects of pH 6.2 and collective effects with 30 mM Pi on the pCa-force relationship were assessed in skinned fast and slow rat skeletal muscle fibers at 15 and 30°C. At 30°C, pH 6.2 + 30 mM Pi significantly depressed peak force in all fiber types, with the greatest effect in type IIx fibers. Across fiber types, Ca(2+) sensitivity was depressed by low pH and low pH + high Pi, with the greater effect at 30°C. For type IIx fibers at 30°C, half-maximal activation (pCa50) was 5.36 at pH 6.2 (no added Pi) and 4.98 at pH 6.2 + 30 mM Pi compared with 6.58 in the control condition (pH 7, no added Pi). At 30°C, n2, reflective of thick filament cooperativity, was unchanged by low cell pH but was depressed from 5.02 to 2.46 in type IIx fibers with pH 6.2 + 30 mM Pi. With acidosis, activation thresholds of all fiber types required higher free Ca(2+) at 15 and 30°C. With the exception of type IIx fibers, the Ca(2+) required to reach activation threshold increased further with added Pi. In conclusion, it is clear that fatigue-inducing effects of low cell pH and elevated Pi at near-physiological temperatures are substantial.


Assuntos
Temperatura Corporal , Sinalização do Cálcio , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Força Muscular , Fosfatos/metabolismo , Acidose/metabolismo , Acidose/fisiopatologia , Animais , Feminino , Concentração de Íons de Hidrogênio , Masculino , Fadiga Muscular , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA