Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Cell Death Dis ; 15(7): 513, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025852

RESUMO

Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.


Assuntos
Neoplasias da Próstata , Valina , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Valina/farmacologia , Valina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Mitocôndrias/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Succínico/metabolismo , Reprogramação Metabólica
2.
Res Sq ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38076926

RESUMO

Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.

3.
Curr Oncol ; 30(11): 9437-9447, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999103

RESUMO

Patient-derived xenograft (PDX) models have been established as important preclinical cancer models, overcoming some of the limitations associated with the use of cancer cell lines. The utility of prostate cancer PDX models has been limited by an inability to genetically manipulate them in vivo and difficulties sustaining PDX-derived cancer cells in culture. Viable, short-term propagation of PDX models would allow in vitro transfection with traceable reporters or manipulation of gene expression relevant to different studies within the prostate cancer field. Here, we report an organoid culture system that supports the growth of prostate cancer PDX cells in vitro and permits genetic manipulation, substantially increasing the scope to use PDXs to study the pathobiology of prostate cancer and define potential therapeutic targets. We have established a short-term PDX-derived in vitro cell culture system which enables genetic manipulation of prostate cancer PDXs LuCaP35 and BM18. Genetically manipulated cells could be re-established as viable xenografts when re-implanted subcutaneously in immunocompromised mice and were able to be serially passaged. Tumor growth of the androgen-dependent LuCaP35 PDX was significantly inhibited following depletion of the androgen receptor (AR) in vivo. Taken together, this system provides a method to generate novel preclinical models to assess the impact of controlled genetic perturbations and allows for targeting specific genes of interest in the complex biological setting of solid tumors.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Xenoenxertos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Prostate ; 83(7): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811381

RESUMO

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismo
5.
Nat Commun ; 13(1): 5680, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167836

RESUMO

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.


Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Expressão Gênica , Humanos , Aprendizado de Máquina , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Análise de Sequência de RNA
6.
J Lipid Res ; 63(6): 100223, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537528

RESUMO

The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.


Assuntos
Ácidos Graxos , Neoplasias , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/química , Metabolismo dos Lipídeos , Transdução de Sinais
7.
Breast Cancer Res ; 24(1): 8, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078508

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Claudinas/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Recidiva Local de Neoplasia , Neuropilina-1/genética , Neuropilina-1/uso terapêutico , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas ras
8.
Sci Adv ; 7(27)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34193425

RESUMO

While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Microambiente Tumoral
9.
Endocr Relat Cancer ; 28(5): 353-375, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33794502

RESUMO

Hyperleptinaemia is a well-established therapeutic side effect of drugs inhibiting the androgen axis in prostate cancer (PCa), including main stay androgen deprivation therapy (ADT) and androgen targeted therapies (ATT). Given significant crossover between the adipokine hormone signalling of leptin and multiple cancer-promoting hallmark pathways, including growth, proliferation, migration, angiogenesis, metabolism and inflammation, targeting the leptin axis is therapeutically appealing, especially in advanced PCa where current therapies fail to be curative. In this study, we uncover leptin as a novel universal target in PCa and are the first to highlight increased intratumoural leptin and leptin receptor (LEPR) expression in PCa cells and patients' tumours exposed to androgen deprivation, as is observed in patients' tumours of metastatic and castrate resistant (CRPC) PCa. We also reveal the world-first preclinical evidence that demonstrates marked efficacy of targeted leptin-signalling blockade, using Allo-aca, a potent, specific, and safe LEPR peptide antagonist. Allo-aca-suppressed tumour growth and delayed progression to CRPC in mice bearing LNCaP xenografts, with reduced tumour vascularity and altered pathways of apoptosis, transcription/translation, and energetics in tumours determined as potential mechanisms underpinning anti-tumour efficacy. We highlight LEPR blockade in combination with androgen axis inhibition represents a promising new therapeutic strategy vital in advanced PCa treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Leptina , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo
10.
PeerJ ; 9: e10280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585078

RESUMO

It is now appreciated that long non-coding RNAs (lncRNAs) are important players in orchestrating cancer progression. In this study we characterized GHSROS, a human lncRNA gene on the opposite DNA strand (antisense) to the ghrelin receptor gene, in prostate cancer. The lncRNA was upregulated by prostate tumors from different clinical datasets. Transcriptome data revealed that GHSROS alters the expression of cancer-associated genes. Functional analyses in vitro showed that GHSROS mediates tumor growth, migration and survival, and resistance to the cytotoxic drug docetaxel. Increased cellular proliferation of GHSROS-overexpressing PC3, DU145, and LNCaP prostate cancer cell lines in vitro was recapitulated in a subcutaneous xenograft model. Conversely, in vitro antisense oligonucleotide inhibition of the lncRNA reciprocally regulated cell growth and migration, and gene expression. Notably, GHSROS modulates the expression of PPP2R2C, the loss of which may drive androgen receptor pathway-independent prostate tumor progression in a subset of prostate cancers. Collectively, our findings suggest that GHSROS can reprogram prostate cancer cells toward a more aggressive phenotype and that this lncRNA may represent a potential therapeutic target.

11.
Cell Rep ; 34(6): 108738, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567271

RESUMO

Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/enzimologia , Transdução de Sinais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/genética , Inativação Gênica , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
12.
Endocr Relat Cancer ; 27(12): 711-729, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33112829

RESUMO

Adiponectin is an adipokine originally identified as dysregulated in obesity, with a key role in insulin sensitisation and in maintaining systemic energy balance. However, adiponectin is progressively emerging as having aberrant signalling in multiple disease states, including prostate cancer (PCa). Circulating adiponectin is lower in patients with PCa than in non-malignant disease, and inversely correlates with cancer severity. More severe hypoadiponectinemia is observed in advanced PCa than in organ-confined disease. Given the crossover between adiponectin signalling and several cancer hallmark pathways that influence PCa growth and progression, we hypothesised that targeting dysregulated adiponectin signalling may inhibit tumour growth and progression. We, therefore, aimed to test the efficacy of correcting the hypoadiponectinemia and dysregulated adiponectin signalling observed in PCa, a world-first PCa therapeutic approach, using peptide adiponectin receptor (ADIPOR) agonist ADP355 in mice bearing subcutaneous LNCaP xenografts. We demonstrate significant evidence for PCa growth inhibition by ADP355, which slowed tumour growth and delayed progression of serum PCa biomarker, prostate-specific antigen (PSA), compared to vehicle. ADP355 conferred a significant advantage by increasing time on treatment with a delayed ethical endpoint. mRNA sequencing and protein expression analyses of tumours revealed ADP355 PCa growth inhibition may be through altered cellular energetics, cellular stress and protein synthesis, which may culminate in apoptosis, as evidenced by the increased apoptotic marker in ADP355-treated tumours. Our findings highlight the efficacy of ADP355 in targeting classical adiponectin-associated signalling pathways in vivo and provide insights into the promising future for modulating adiponectin signalling through ADIPOR agonism as a novel anti-tumour treatment modality.


Assuntos
Neoplasias da Próstata/terapia , Receptores de Adiponectina/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus
13.
J Nat Prod ; 83(8): 2357-2366, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32691595

RESUMO

The spirooxepinisoxazoline alkaloid psammaplysin F (1) was selected as a scaffold for the generation of a unique screening library for both drug discovery and chemical biology research. Large-scale extraction and isolation chemistry was performed on a marine sponge (Hyattella sp.) collected from the Great Barrier Reef in order to acquire >200 mg of the desired bromotyrosine-derived alkaloidal scaffold. Parallel solution-phase semisynthesis was employed to generate a series of psammaplysin-based urea (2-9) and amide analogues (10-11) in low to moderate yields. The chemical structures of all analogues were characterized using NMR and MS data. The absolute configuration of psammaplysin F and all semisynthetic analogues was determined as 6R, 7R by comparison of ECD data with literature values. All compounds (1-11) were evaluated for their effect on cell cycle distribution and changes to cancer metabolism in LNCaP prostate cancer cells using a multiparametric quantitative single-cell imaging approach. These investigations identified that in LNCaP cells psammaplysin F and some urea analogues caused loss of mitochondrial membrane potential, fragmentation of the mitochondrial tubular network, chromosome misalignment, and cell cycle arrest in mitosis.


Assuntos
Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Compostos de Espiro/síntese química , Tirosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Poríferos/química , Análise Espectral/métodos , Compostos de Espiro/isolamento & purificação , Tirosina/síntese química , Tirosina/isolamento & purificação
14.
Cancer Metab ; 8: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577235

RESUMO

BACKGROUND: Metabolic reprograming, non-mutational epigenetic changes, increased cell plasticity, and multidrug tolerance are early hallmarks of therapy resistance in cancer. In this temporary, therapy-tolerant state, cancer cells are highly sensitive to ferroptosis, a form of regulated cell death that is caused by oxidative stress through excess levels of iron-dependent peroxidation of polyunsaturated fatty acids (PUFA). However, mechanisms underpinning therapy-induced ferroptosis hypersensitivity remain to be elucidated. METHODS: We used quantitative single-cell imaging of fluorescent metabolic probes, transcriptomics, proteomics, and lipidomics to perform a longitudinal analysis of the adaptive response to androgen receptor-targeted therapies (androgen deprivation and enzalutamide) in prostate cancer (PCa). RESULTS: We discovered that cessation of cell proliferation and a robust reduction in bioenergetic processes were associated with multidrug tolerance and a strong accumulation of lipids. The gain in lipid biomass was fueled by enhanced lipid uptake through cargo non-selective (macropinocytosis, tunneling nanotubes) and cargo-selective mechanisms (lipid transporters), whereas de novo lipid synthesis was strongly reduced. Enzalutamide induced extensive lipid remodeling of all major phospholipid classes at the expense of storage lipids, leading to increased desaturation and acyl chain length of membrane lipids. The rise in membrane PUFA levels enhanced membrane fluidity and lipid peroxidation, causing hypersensitivity to glutathione peroxidase (GPX4) inhibition and ferroptosis. Combination treatments against AR and fatty acid desaturation, lipase activities, or growth medium supplementation with antioxidants or PUFAs altered GPX4 dependence. CONCLUSIONS: Our work provides mechanistic insight into processes of lipid metabolism that underpin the acquisition of therapy-induced GPX4 dependence and ferroptosis hypersensitivity to standard of care therapies in PCa. It demonstrates novel strategies to suppress the therapy-tolerant state that may have potential to delay and combat resistance to androgen receptor-targeted therapies, a currently unmet clinical challenge of advanced PCa. Since enhanced GPX4 dependence is an adaptive phenotype shared by several types of cancer in response to different therapies, our work might have universal implications for our understanding of metabolic events that underpin resistance to cancer therapies.

15.
EJNMMI Res ; 10(1): 46, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382920

RESUMO

PURPOSE: Chimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of 89Zr-labelled Miltuximab® as an imaging agent, and 177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer. METHODS: Male BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days. RESULTS: Antibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability. CONCLUSION: These findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.

16.
Clin Cancer Res ; 26(7): 1678-1689, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919137

RESUMO

PURPOSE: Patients with metastatic prostate cancer are increasingly presenting with treatment-resistant, androgen receptor-negative/low (AR-/Low) tumors, with or without neuroendocrine characteristics, in processes attributed to tumor cell plasticity. This plasticity has been modeled by Rb1/p53 knockdown/knockout and is accompanied by overexpression of the pluripotency factor, Sox2. Here, we explore the role of the developmental transcription factor Sox9 in the process of prostate cancer therapy response and tumor progression. EXPERIMENTAL DESIGN: Unique prostate cancer cell models that capture AR-/Low stem cell-like intermediates were analyzed for features of plasticity and the functional role of Sox9. Human prostate cancer xenografts and tissue microarrays were evaluated for temporal alterations in Sox9 expression. The role of NF-κB pathway activity in Sox9 overexpression was explored. RESULTS: Prostate cancer stem cell-like intermediates have reduced Rb1 and p53 protein expression and overexpress Sox2 as well as Sox9. Sox9 was required for spheroid growth, and overexpression increased invasiveness and neural features of prostate cancer cells. Sox9 was transiently upregulated in castration-induced progression of prostate cancer xenografts and was specifically overexpressed in neoadjuvant hormone therapy (NHT)-treated patient tumors. High Sox9 expression in NHT-treated patients predicts biochemical recurrence. Finally, we link Sox9 induction to NF-κB dimer activation in prostate cancer cells. CONCLUSIONS: Developmentally reprogrammed prostate cancer cell models recapitulate features of clinically advanced prostate tumors, including downregulated Rb1/p53 and overexpression of Sox2 with Sox9. Sox9 is a marker of a transitional state that identifies prostate cancer cells under the stress of therapeutic assault and facilitates progression to therapy resistance. Its expression may index the relative activity of the NF-κB pathway.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Neuroendócrinas/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/patologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Células Neuroendócrinas/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Oncol ; 14(1): 105-128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630475

RESUMO

Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Calicreínas/metabolismo , Metástase Neoplásica/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatografia Líquida de Alta Pressão , Bases de Dados Genéticas , Regulação para Baixo , Humanos , Imuno-Histoquímica , Calicreínas/genética , Masculino , Terapia Neoadjuvante , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , Transcriptoma , Microambiente Tumoral/genética , Regulação para Cima
18.
Int J Oncol ; 55(6): 1223-1236, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638176

RESUMO

Recent evidence suggests that numerous long non­coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription­quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA­MB­231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA­MB­231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Animais , Apoptose/genética , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Grelina/genética , Evasão Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Artigo em Inglês | MEDLINE | ID: mdl-31379747

RESUMO

Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT.

20.
Bone Res ; 7: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044095

RESUMO

While stromal interactions are essential in cancer adaptation to hormonal therapies, the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood. Here, we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases, and used it to study the effects of androgen deprivation in this microenvironment. The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds, leading to a mineralized osteoblast-derived microtissue containing, in a 3D setting, viable osteoblastic cells, osteocytic cells, and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins, and mineral content. Direct co-culture of androgen receptor-dependent/independent cell lines (LNCaP, C4-2B, and PC3) led cancer cells to display functional and molecular features as observed in vivo. Co-cultured cancer cells showed increased affinity to the microtissues, as a function of their bone metastatic potential. Co-cultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation, consistent with the clinical marker profile of osteoblastic bone metastases. LNCaP showed a significant adaptive response under androgen deprivation in the microtissues, with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase, enolase 2). Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor, alkaline phosphatase, and dopa decarboxylase, as seen in the transition towards resistance. The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...