Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(50): 17467-17476, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480638

RESUMO

Online spectroscopic measurements can be used to provide unique insight into complex chemical systems, enabling new understanding and optimization of chemical processes. A key example of this is discussed here with the monitoring of pH of various acid systems in real-time. In this work the acids used in multiple chemical separations processes, such as TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) and oxalate precipitation, were characterized. Raman spectroscopy, a robust optical approach that can be integrated in corrosive processes, was used to follow the unique fingerprints of the various protonated and deprotonated acid species. This data was analyzed using a hierarchical modeling approach to build a consolidated model scheme using optical fingerprints from all weak acids to measure pH associated with any of the weak acid systems studied here. Validation of system performance included utilizing Raman spectroscopy under dynamic flow conditions to monitor solution pH under changing process conditions in-line. Overall, the Raman based approach provided accurate analysis of weak acid solution pH.


Assuntos
Oxalatos , Análise Espectral Raman , Análise Espectral Raman/métodos , Quimiometria , Ácido Cítrico , Ácidos , Concentração de Íons de Hidrogênio
3.
Appl Spectrosc ; 76(2): 173-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34643131

RESUMO

Optical spectroscopy is a powerful characterization tool with applications ranging from fundamental studies to real-time process monitoring. However, it can be difficult to apply to complex samples that contain interfering analytes which are common in processing streams. Multivariate (chemometric) analysis has been examined for providing selectivity and accuracy to the analysis of optical spectra and expanding its potential applications. Here we will discuss chemometric modeling with an in-depth comparison to more simplistic analysis approaches and outline how chemometric modeling works while exploring the limits on modeling accuracy. Understanding the limitations of the chemometric model can provide better analytical assessment regarding the accuracy and precision of the analytical result. This will be explored in the context of UV-Vis absorbance of neodymium (Nd3+) in the presence of interferents, erbium (Er3+) and copper (Cu2+) under conditions simulating the liquid-liquid extraction approach used to recycle plutonium (Pu) and uranium (U) in used nuclear fuel worldwide. The selected chemometric model, partial least squares regression, accurately quantifies Nd3+ with a low percentage error in the presence of interfering analytes and even under conditions that the training set does not describe.

4.
Anal Chem ; 93(14): 5890-5896, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33780245

RESUMO

Complex chemical systems that exhibit varied and matrix-dependent speciation are notoriously difficult to monitor and characterize online and in real-time. Optical spectroscopy is an ideal tool for in situ characterization of chemical species that can enable quantification as well as species identification. Chemometric modeling, a multivariate method, has been successfully paired with optical spectroscopy to enable measurement of analyte concentrations even in complex solutions where univariate methods such as Beer's law analysis fail. Here, Raman spectroscopy is used to quantify the concentration of phosphoric acid and its three deprotonated forms during a titration. In this system, univariate approaches would be difficult to apply due to multiple species being present simultaneously within the solution as the pH is varied. Locally weighted regression (LWR) modeling was used to determine phosphate concentration from spectral signature. LWR results, in tandem with multivariate curve resolution modeling, provide a direct measurement of the concentration of each phosphate species using only the Raman signal. Furthermore, results are presented within the context of fundamental solution chemistry, including Pitzer equations, to compensate for activity coefficients and nonidealities associated with high ionic strength systems.

5.
Am J Emerg Med ; 46: 799.e1-799.e2, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33597094

RESUMO

Chronic nitrous oxide abuse is a known cause of myeloneuropathy. Nitrous oxide irreversibly inactivates vitamin B12 causing demyelination of the dorsal spinal columns, clinically indistinguishable from that which is caused by vitamin B12 deficiency. We report a 37-year-old female who presented with ataxia, loss of lower extremity proprioception, demyelination of her cervical dorsal spinal columns, and other laboratory and physical exam findings consistent with nitrous oxide abuse. The patient reported daily use in excess of 500 nitrous oxide cartridges, also known as "whippits". Nitrous oxide myeloneuropathy should be included in the differential diagnoses for emergency medicine physicians when evaluating a patient with bilateral neurologic deficits and ataxia.


Assuntos
Analgésicos não Narcóticos/efeitos adversos , Mielite Transversa/induzido quimicamente , Óxido Nitroso/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/complicações , Adulto , Serviço Hospitalar de Emergência , Feminino , Humanos , Imageamento por Ressonância Magnética , Mielite Transversa/diagnóstico , Mielite Transversa/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Vitamina B 12/antagonistas & inibidores , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/complicações
6.
Anal Chem ; 93(3): 1643-1651, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33337856

RESUMO

Microfluidics have many potential applications including characterization of chemical processes on a reduced scale, spanning the study of reaction kinetics using on-chip liquid-liquid extractions, sample pretreatment to simplify off-chip analysis, and for portable spectroscopic analyses. The use of in situ characterization of process streams from laboratory-scale and microscale experiments on the same chemical system can provide comprehensive understanding and in-depth analysis of any similarities or differences between process conditions at different scales. A well-characterized extraction of Nd(NO3)3 from an aqueous phase of varying NO3- (aq) concentration with tributyl phosphate (TBP) in dodecane was the focus of this microscale study and was compared to an earlier laboratory-scale study utilizing counter current extraction equipment. Here, we verify that this same extraction process can be followed on the microscale using spectroscopic methods adapted for microfluidic measurement. Concentration of Nd (based on UV-vis) and nitrate (based on Raman) was chemometrically measured during the flow experiment, and resulting data were used to determine the distribution ratio for Nd. Extraction distributions measured on the microscale were compared favorably with those determined on the laboratory scale in the earlier study. Both micro-Raman and micro-UV-vis spectroscopy can be used to determine fundamental parameters with significantly reduced sample size as compared to traditional laboratory-scale approaches. This leads naturally to time, cost, and waste reductions.

7.
Anal Chem ; 92(8): 5882-5889, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32223185

RESUMO

Measurement of pH is an integral component of chemical studies and process control; however, traditional pH probes are difficult to utilize in harsh or complex chemical systems. Optical spectroscopy-based online monitoring offers a powerful and novel route for characterizing system parameters, such as pH, and is well adapted to deployment in harsh environments or chemically complex systems. Specifically, Raman spectroscopy combined with chemometric analysis can provide an improved method of online p[H+] measurement. Multivariate curve resolution (MCR) analysis of Raman spectra can be utilized to determine speciation as a function of p[H+], and the MCR scores assigned to each species can be used to calculate p[H+]. Subsequent chemometric modeling can be used to correlate spectral response to p[H+]. This was demonstrated with phosphoric acid, a chemical system known to challenge traditional pH probes. Raman spectra exhibit clear changes with pH due to changing speciation, and chemometric modeling can be successfully utilized to correlate those fingerprints to p[H+]. With the use of this approach, p[H+] of the phosphoric acid system can be accurately measured without foreknowledge of system conditions such as ionic strength.

8.
ACS Sens ; 4(9): 2288-2295, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31434479

RESUMO

Microfluidics is an appealing analytical tool in the global effort to close the nuclear fuel cycle. Using a microfluidic chip permits the analysis of greatly reduced sample volumes compared to what is necessary for traditional analytical methods. There is a commensurate reduction in disposal volume and cost. The development of novel sensors is necessary to take full advantage of the microchip configuration, where optical-spectroscopy-based approaches offer a powerful route to characterize chemical composition. This study uses simultaneously applied UV-vis and micro-Raman spectroscopies adapted to function on the microscale to analyze in situ both the Nd3+ (UV-vis-active) and HNO3 (Raman-active) concentrations in the same sample. An adjustable translation platform was designed to hold the micro-Raman probe above and perpendicular to the chip face and the UV-vis probe in the plane of the chip. These complimentary spectral techniques when processed through multivariate partial least-squares (PLS) models gave an accurate picture of the widely varying solution concentrations as a function of time for each solution component. Solution matrix effects can drastically alter analyte signatures as measured by both UV-vis absorbance and Raman spectroscopy. PLS methods successfully modeled these spectral changes and accurately measured concentrations of components of interest within the microfluidic chip.


Assuntos
Dispositivos Lab-On-A-Chip , Espectrofotometria Ultravioleta/instrumentação , Análise Espectral Raman/instrumentação , Análise dos Mínimos Quadrados , Soluções , Fatores de Tempo
9.
Anal Chem ; 90(14): 8345-8353, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29733195

RESUMO

Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.

10.
Analyst ; 143(5): 1188-1196, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29417962

RESUMO

To simplify and improve the safety of reprocessing used nuclear fuel, an initial assessment was made of Raman microscopy applied to microfluidic volumes with a view toward the on-line spectroscopic measurement of highly radioactive solutions. This study compares a microscopic Raman probe (excitation focal point diameter 70 µm) to a larger, well studied probe (excitation focal point diameter 125 µm) used in prior investigations. This was done by chemometrically modeling and predicting concentrations of HNO3 solutions (0 M to 8 M) as they flowed through microfluidic cells based upon spectra from each probe. Spectra recorded for each probe using the same static HNO3 solution set contained in 2 dram glass vials were used as training sets to produce models for the respective probes. Modeling required baseline, normalization and smoothing preprocessing to compensate for a reduced path length between the static glass vial training set (4 cm) and the reduced path length flow cell (1 cm), wide ranging solution concentrations, and the associated non-linear spectral changes, and abrupt and uneven concentration changes of flowing solutions. The micro-Raman probe is able to produce spectra that may be analyzed chemometrically to accurately predict the concentration of flowing HNO3 solutions down to microliter volumes. Based upon RMSECV and RMSEP modeling statistics concentration predictions of the micro-Raman probe are comparable to those obtained for a macro-Raman on identical samples.

11.
Anal Chem ; 90(4): 2548-2554, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381059

RESUMO

Microfluidic devices are a growing field with significant potential for applications to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost-effective means of monitoring streams during processing are needed. Here we apply a novel micro-Raman probe to the online monitoring of streams within a microfluidic device. For either macro- or microscale process monitoring via spectroscopic response, interfering or confounded bands can obfuscate results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounding spectroscopic bands. This is demonstrated on solutions of HNO3 and NaNO3 within microflow and microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...