Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 32(1): 118-29, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20597974

RESUMO

A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.


Assuntos
Coturnix , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Infusões Intraventriculares , Masculino , Quimpirol/farmacologia , Racloprida/farmacologia , Ratos
2.
Behav Neurosci ; 124(2): 300-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20364890

RESUMO

The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role played by preoptic dopamine on male sexual behavior. However, it has been questioned whether dopamine is specifically related to the occurrence of male sexual behavior and not simply involved in general arousal. To address this question, we asked whether dopamine release in the mPOA is linked to the production of male sexual behavior in Japanese quail (Coturnix japonica), a species that exhibits a much shorter temporal pattern of copulation than rats and does not have an intermittent organ, resulting in a very different topography of their sexual response. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, during, and after exposure to a female using in vivo microdialysis and analyzed using high-performance liquid chromatography with electrochemical detection. Extracellular dopamine significantly increased in the presence of a female and returned to baseline after removal of the female. However, quail that failed to copulate did not display this increased release. These findings indicate that it is not solely the presence of a female that drives dopamine release in males, but how a male responds to her. Furthermore, in quail that copulated, dopamine release did not change in samples collected during periods of no copulation. Together, these findings support the hypothesis that dopamine action in the mPOA is specifically linked to sexual motivation and not only to copulatory behavior or physical arousal.


Assuntos
Dopamina/metabolismo , Motivação/fisiologia , Área Pré-Óptica/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Coturnix , Feminino , Masculino , Microdiálise
5.
J Nutr Biochem ; 12(4): 242-250, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11287220

RESUMO

In previous studies, sodium pivalate has been administered to rats in their drinking water (20 mmoles/L; equivalent to 0.3% of the diet) as a way to lower the concentration of carnitine in tissues and to produce a model of secondary carnitine deficiency. Although this level of supplementation results in a marked decrease in carnitine concentration in a variety of tissues, it does not produce the classical signs of carnitine deficiency (i.e., decreased fatty acid oxidation and ketogenesis). The present study was designed (1) to determine if increasing the level of pivalate supplementation (0.6, 1.0% of the diet) would further reduce the concentrations of total and free carnitine in rat tissues without altering growth or food intake, and (2) to examine the effect of length of feeding (4 vs. 8 weeks) on these variables. Male, Sprague-Dawley rats were randomly assigned to either a control (0.2% sodium bicarbonate) or experimental diet (0.3, 0.6, 1.0% sodium pivalate) for either four or eight weeks. Animals (n = 6/group) were housed in metabolic cages; food and water were provided ad libitum throughout the study. Supplementation with sodium pivalate did not alter water intake or urine output. Ingestion of a diet containing 1.0% pivalic acid decreased food intake (g/day; P < 0.05), final body weight (P < 0.007), and growth rate (P < 0.001) after four weeks. The concentration of total carnitine in plasma, heart, liver, muscle, and kidney was reduced in all experimental groups (P < 0.001), regardless of level of supplementation or length of feeding. The concentration of free carnitine in heart, muscle, and kidney was also reduced (P < 0.001) in rats treated with pivalate for either four or eight weeks. The concentration of free carnitine in liver was reduced in animals supplemented with pivalate for eight weeks (P < 0.05), but no effect was observed in livers from rats treated for four weeks. Excretion of total carnitine and short chain acylcarnitine in urine was increased in pivalate supplemented rats throughout the entire feeding period (P < 0.001). Free carnitine excretion was increased during Weeks 1 and 2 (P < 0.01), but began to decline during Week 3 in experimental groups. During Weeks 6 and 8, free carnitine excretion in pivalate supplemented rats was less than that of control animals (P < 0.01). In summary, no further reduction in tissue carnitine concentration was observed when rats were supplemented with sodium pivalate at levels greater than 0.3% of the diet. Food intake (g/day) and growth were decreased in rats fed a diet containing 1.0% sodium pivalate. These data indicate that maximal lowering of tissue carnitine concentrations is achieved by feeding diets containing 0.3% sodium pivalate or less.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...