Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 1048932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567947

RESUMO

The high intensity of X-ray free electron lasers (XFELs) can damage solution-phase samples on every scale, ranging from the molecular or electronic structure of a sample to the macroscopic structure of a liquid microjet. By using a large surface area liquid sheet microjet as a sample target instead of a standard cylindrical microjet, the incident X-ray spot size can be increased such that the incident intensity falls below the damage threshold. This capability is becoming particularly important for high repetition rate XFELs, where destroying a target with each pulse would require prohibitively large volumes of sample. We present here a study of microfluidic liquid sheet dimensions as a function of liquid flow rate. Sheet lengths, widths and thickness gradients are shown for three styles of nozzles fabricated from isotropically etched glass. In-vacuum operation and sample recirculation using these nozzles is demonstrated. The effects of intense XFEL pulses on the structure of a liquid sheet are also briefly examined.

2.
Sci Adv ; 8(46): eabq7240, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383663

RESUMO

The BCG (Bacille Calmette-Guérin) vaccine, introduced 100 years ago for tuberculosis prevention, has emerging therapeutic off-target benefits for autoimmunity. In randomized controlled trials, BCG vaccinations were shown to gradually improve two autoimmune conditions, type 1 diabetes (T1D) and multiple sclerosis. Here, we investigate the mechanisms behind the autoimmune benefits and test the hypothesis that this microbe synergy could be due to an impact on the host T cell receptor (TCR) and TCR signal strength. We show a quantitative TCR defect in T1D subjects consisting of a marked reduction in receptor density on T cells due to hypermethylation of TCR-related genes. BCG corrects this defect gradually over 3 years by demethylating hypermethylated sites on members of the TCR gene family. The TCR sequence is not modified through recombination, ruling out a qualitative defect. These findings support an underlying density defect in the TCR affecting TCR signal strength in T1D.

3.
Vaccine ; 40(11): 1540-1554, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33933315

RESUMO

BACKGROUND: A recent epigenome-wide association study of genes associated with type 2 diabetics (T2D), used integrative cross-omics analysis to identify 22 abnormally methylated CpG sites associated with insulin and glucose metabolism. Here, in this epigenetic analysis we preliminarily determine whether the same CpG sites identified in T2D also apply to type 1 diabetes (T1D). We then determine whether BCG vaccination could correct the abnormal methylation patterns, considering that the two diseases share metabolic derangements. METHODS: T1D (n = 13) and control (n = 8) subjects were studied at baseline and then T1D subjects studied yearly for 3 years after receiving BCG vaccinations in a clinical trial. In this biomarker analysis, methylation patterns were evaluated on CD4+ T-lymphocytes from baseline and yearly blood samples using the human Illumina Methylation EPIC Bead Chip. Methylation analysis combined with mRNA analysis using RNAseq. RESULTS: Broad but not complete overlap was observed between T1D and T2D in CpG sites with abnormal methylation. And in the three-year observation period after BCG vaccinations, the majority of the abnormal methylation sites were corrected in vivo. Genes of particular interest were related to oxidative phosphorylation (CPT1A, LETM1, ABCG1), to the histone lysine demethylase gene (KDM2B), and mTOR signaling through the DDIT4 gene. The highlighted CpG sites for both KDM2B and DDIT4 genes were hypomethylated at baseline compared to controls; BCG vaccination corrected the defect by hypermethylation. CONCLUSIONS: Glycolysis is regulated by methylation of genes. This study unexpectedly identified both KDM2B and DDIT4 as genes controlling BCG-driven re-methylation of histones, and the activation of the mTOR pathway for facilitated glucose transport respectively. The BCG effect at the gene level was confirmed by reciprocal mRNA changes. The DDIT4 gene with known inhibitory role of mTOR was re-methylated after BCG, a step likely to allow improved glucose transport. BCGs driven methylation of KDM2B's site should halt augmented histone activity, a step known to allow cytokine activation and increased glycolysis.


Assuntos
Vacina BCG , Glicemia/metabolismo , Diabetes Mellitus Tipo 1 , Proteínas de Ligação ao Cálcio , Ilhas de CpG , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Epigênese Genética , Humanos , Proteínas de Membrana/genética , Vacinação
4.
iScience ; 24(10): 103150, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646988

RESUMO

Bacillus Calmette-Guerin (BCG) vaccinations improve glycemic control in juvenile-onset Type I diabetes (T1D), an effect driven by restored sugar transport through aerobic glycolysis. In a pilot clinical trial, T1D, but not latent autoimmune diabetes of adults (LADA), exhibited lower blood sugars after multidose BCG. Using a glucose transport assay, monocytes from T1D subjects showed a large stimulation index with BCG exposures; LADA subjects showed minimal BCG-induced sugar responsiveness. Monocytes from T1D, type 2 diabetes (T2D), and non-diabetic controls (NDC) were all responsive in vitro to BCG by augmented sugar utilization. Adults with prior neonatal BCG vaccination show accelerated glucose transport decades later. Finally, in vivo experiments with the NOD mouse (a T1D model) and obese db/db mice (a T2D model) confirm BCG's blood-sugar-lowering and accelerated glucose metabolism with sufficient dosing. Our results suggest that BCG's benefits for glucose metabolism may be broadly applicable to T1D and T2D, but less to LADA.

5.
Sci Rep ; 11(1): 14933, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294806

RESUMO

Induction of immunosuppressive T-regulatory cells (Tregs) is a desirable goal in autoimmunity, and perhaps other immune diseases of activation. One promising avenue is with the bacille-calmette-guérin (BCG) vaccine in autoimmune type 1 diabetes (T1D). Its administration is associated with gradual clinical improvements in human autoimmunity over a 2-3 year post-vaccination period. We hypothesize that those improvements, and their unusually long time course to fully materialize, are partially attributable to BCG's induction of Tregs. Here we report on a 3 year-long longitudinal cohort of T1Ds and examine the mechanism by which Treg induction occurs. Using the Human Infinium Methylation EPIC Bead Chip, we show that BCG vaccination is associated with gradual demethylation of most of 11 signature genes expressed in highly potent Tregs: Foxp3, TNFRSF18, CD25, IKZF2, IKZF4, CTLA4, TNFR2, CD62L, Fas, CD45 and IL2; nine of these 11 genes, by year 3, became demethylated at the majority of CpG sites. The Foxp3 gene was studied in depth. At baseline Foxp3 was over-methylated compared to non-diabetic controls; 3 years after introduction of BCG, 17 of the Foxp3 gene's 22 CpG sites became significantly demethylated including the critical TSDR region. Corresponding mRNA, Treg expansion and clinical improvement supported the significance of the epigenetic DNA changes. Taken together, the findings suggest that BCG has systemic impact on the T cells of the adaptive immune system, and restores immune balance through Treg induction.


Assuntos
Vacina BCG/administração & dosagem , Metilação de DNA , Diabetes Mellitus Tipo 1/genética , Redes Reguladoras de Genes , Linfócitos T Reguladores/imunologia , Adulto , Vacina BCG/imunologia , Estudos de Casos e Controles , Ilhas de CpG , Diabetes Mellitus Tipo 1/imunologia , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Estudos Longitudinais , Análise de Sequência de RNA
6.
Phys Chem Chem Phys ; 21(44): 24383-24392, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663559

RESUMO

This paper highlights the challenge of predicting the excited state proton transfer (ESPT) reactions of small organic compounds with multiple proton transfer sites. Aminonaphthols, naphthalene compounds with both hydroxyl and amino substituents, can be viewed as a combination of two monoprotic photoacids, naphthol and naphthylammonium. Here, the ESPT reactions of 3-ammonium-2-naphthol (3N2OH) and 1-ammonium-2-naphthol (1N2OH) were studied in water and methanol using a combination of steady-state and time-correlated single-photon counting emission spectroscopy. For 3N2OH, ESPT was observed at the OH site in water but at neither of the sites in methanol; for 1N2OH, ESPT was observed at both the OH and NH3+ sites in water but only at the NH3+ site in methanol. Evidence of ESPT at the NH3+ site is limited for aminonaphthols. The divergent dynamics of 3N2OH and 1N2OH in water and methanol are discussed; dependent on the substitution and solvent, the ESPT reactions were analysed within the frameworks of reference photoacids 2-naphthol and 1-naphthylammonium. The application of crown ether and salt to control the release of select protons in non-aqueous media is also discussed.

7.
Phys Chem Chem Phys ; 20(33): 21325-21333, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30088501

RESUMO

Photoactive charge transfer compounds are of strong interest for their potential applications in material, chemical, and biological science and their abilities to elucidate fundamental charge transfer mechanisms. Aminonaphthols, photoacids with both oxygen (OH) and nitrogen-based (NH2) protonation sites, have been reported to undergo simultaneous excited-state proton transfer (ESPT) in water upon excitation. In this paper, the ESPT mechanism for zwitterion formation in 8-amino-2-naphthol (8N2OH) and 5-amino-2-naphthol (5N2OH) was examined using a combination of time-resolved emission spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The measurements prompted a re-assignment of the zwitterion state in the steady-state emission spectra; analysis of the time-correlated single-photon counting emission data showed that the zwitterion was formed only from excitation of protonated 5N2OH and 8N2OH such that ESPT occurred only at the single hydroxyl group. The protonation state of the amino group dramatically altered the photoacidity of OH, such that the pH behaved as an on/off switch for photoacidity. In the protonated state (NH3+), the pKa*(OH) values of 5N2OH and 8N2OH were both 1.1 ± 0.2, while in the deprotonated state (NH2), the two pKa*(OH) values were similar to the ground state proton acidity, pKa(OH) = 9.5 ± 0.2. The switching of the photoacidity was investigated using TD-DFT calculations and the linear free energy Hammett relation. The latter was shown to not describe the excited state data over the broad pH range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...