Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 3046483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401919

RESUMO

Oxidative stress plays a key role in the initiation and progression of metabolic diseases, including obesity. Preventing the accumulation of reactive oxygen species and oxidative damage to macromolecules is a beneficial strategy for reducing comorbidities associated with obesity. Fruits from the Spondias genus are known for their antioxidant activity, but they are not available year-round due to their seasonality. In this context, we investigated the antioxidant activity and identified the chemical constituents of the aqueous extract of the stem bark of Spondias purpurea L. (EBSp). Additionally, we evaluated the effect of EBSp consumption on metabolic parameters in mice with obesity induced by a high-fat diet. Chemical analyses revealed 19 annotated compounds from EBSp, including flavan-3-ols, proanthocyanidins, methoxylated coumarin, and gallic and ellagic acids, besides other phenolic compounds. In vitro, EBSp showed antioxidant activity through the scavenging of the free radicals and the protection of macromolecules against oxidative damage. Cellular assays revealed that EBSp reduced the levels of malondialdehyde produced by erythrocytes exposed to the oxidizing agent AAPH. Flow cytometry studies showed that EBSp reduced reactive oxygen species levels in human peripheral blood mononuclear cells treated with hydrogen peroxide. Obese mice treated with EBSp (400 mg.kg-1) for 60 days showed reduced levels of malondialdehyde in the heart, liver, kidneys, and nervous system. The total cholesterol levels in mice treated with EBSp reached levels similar to those after treatment with the drug simvastatin. Together, the results show that the combination of the different phenolic compounds in S. purpurea L. bark promotes antioxidant effects in vitro and in vivo, resulting in cytoprotection in the context of oxidative stress associated with obesity and a reduction in hypercholesterolemia. From a clinical perspective, the reduction in oxidative stress in obese individuals contributes to the reduction in the emergence of comorbidities associated with this metabolic syndrome.


Assuntos
Anacardiaceae , Hipercolesterolemia , Anacardiaceae/química , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Malondialdeído/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Estresse Oxidativo , Fenóis/farmacologia , Casca de Planta/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
2.
J Am Chem Soc ; 144(7): 3050-3062, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35049304

RESUMO

Long-persistent luminescence (LPL), also known as afterglow, is a phenomenon in which the material shows long-lasting luminescence after the cessation of the excitation source. The research of LPL continues to attract much interest due to its fundamental nature and its potential in the development of the next generation of functional materials. However, most of the current LPL materials are multicomponent inorganic systems obtained after harsh synthetic procedures and often use rare-earth metals. Recently, metal free organic long-persistent luminescence (OLPL) has gained much interest because it can bypass many of the disadvantages of inorganic systems. To date, the most successful method to generate OLPL systems is to access charge-separated states through binary donor-acceptor exciplex systems. However, it has been reported that the ratios of the binary systems affect OLPL properties, complicating the reproducibility and large-scale production of OLPL materials. Simpler OLPL systems can overcome these issues for the benefit of the development and adoption of OLPL systems. Here, we report on the rational design and synthesis of a single-component OLPL system with detectable afterglow for at least 12 min under ambient conditions. This work exemplifies an easy design principle for new OLPL materials. The investigation of the material provides valuable insights toward the generation of OLPL from a single-component system.

3.
Adv Mater ; 32(22): e2001026, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323364

RESUMO

Because of their innate ability to store and then release energy, long-persistent luminescence (LPL) materials have garnered strong research interest in a wide range of multidisciplinary fields, such as biomedical sciences, theranostics, and photonic devices. Although many inorganic LPL systems with afterglow durations of up to hours and days have been reported, organic systems have had difficulties reaching similar timescales. In this work, a design principle based on the successes of inorganic systems to produce an organic LPL (OLPL) system through the use of a strong organic electron trap is proposed. The resulting system generates detectable afterglow for up to 7 h, significantly longer than any other reported OLPL system. The design strategy demonstrates an easy methodology to develop organic long-persistent phosphors, opening the door to new OLPL materials.

4.
J Am Chem Soc ; 142(8): 3959-3969, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999445

RESUMO

New agents with particular specificity toward targeted bacteria and superefficacy in antibacterial activity are urgently needed in facing the crisis of worldwide antibiotic resistance. Herein, a novel strategy by equipping bacteriophage (PAP) with photodynamic inactivation (PDI)-active AIEgens (luminogens with aggregation-induced emission property) was presented to generate a type of AIE-PAP bioconjugate with superior capability for both targeted imaging and synergistic killing of certain species of bacteria. The targeting ability inherited from the bacteriophage enabled the bioconjugates to specifically recognize the host bacteria with preserved infection activity of phage itself. Meanwhile, the AIE characteristic empowered them a monitoring functionality, and the real-time tracking of their interactions with targets was therefore realized via convenient fluorescence imaging. More importantly, the PDI-active AIEgens could serve as powerful in situ photosensitizers producing high-efficiency reactive oxygen species (ROS) under white light irradiation. As a result, selective targeting and synergistic killing of both antibiotic-sensitive and multi-drug-resistant (MDR) bacteria were successfully achieved in in vitro and in vivo antibacterial tests with excellent biocompatibility. This novel AIE-phage integrated strategy would diversify the existing pool of antibacterial agents and inspire the development of promising drug candidates in the future.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bacteriófagos/fisiologia , Microscopia de Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos
5.
Angew Chem Int Ed Engl ; 59(22): 8552-8559, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31614054

RESUMO

We have studied the photophysics of tetrafurylethene, an aggregation-induced emission luminogen with exceptionally short intramolecular O-O distances of 2.80 Šand a significant red-shifted morphochromism (27 nm) when going from the aggregate to the crystal. The short O-O distances, which are substantially smaller than the sum of the van der Waals radii (3.04 Å), are due to the fact that the oxygen atoms act as an electronic bridge connecting the furan rings on opposite ends of the central double bond, giving rise to a circular delocalization of the π-electron density across the rings. In the excited state the O-O distance is further reduced to 2.70 Å; the increased O-O interaction causes a narrowing of the HOMO-LUMO gap, resulting in the red morphochromism of the emission. Our results show the structural origin of the red-shifted emission lies in close O-O contacts, paving the way for understanding the clusteroluminescence of oxygen-rich non-conjugated systems that emit visible light.

6.
Org Biomol Chem ; 17(47): 10103-10108, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31755516

RESUMO

In this work, we present a novel, efficient and green methodology for the synthesis of thioethers by the C-S cross-coupling reaction with the assistance of [Ce(l-Pro)2]2Ox as a heterogeneous catalyst in good to excellent yields. A scale-up of the protocol was explored using an unpublished methodology for the synthesis of a dapsone-precursor, which proved to be very effective over a short time. The catalyst [Ce(l-Pro)2]2Ox was recovered and it was shown to be effective for five more reaction cycles.

7.
Angew Chem Int Ed Engl ; 58(14): 4536-4540, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30688392

RESUMO

The development of molecular machines requires new building blocks which are easy to characterize and visualize to realize a complexity comparable to their natural counterparts such as biological enzymes. Furthermore, with the desire to build functional nanobots capable of navigating living organisms, it is necessary that the building blocks show mobility even in the solid state. Herein we report a system which is emissive in the amorphous state but is non-fluorescent in the crystalline state due to the formation of extensive π-π interactions. This dual nature could be exploited for easy visualization of its solid-state molecular rearrangement. The emission of the amorphous film was quenched as the molecules spontaneously formed π-π interactions even in the solid state. Scratching the non-emissive film destroyed the interactions and restored the emission of the film. The emission quickly disappeared with an average lifetime of 20 s as the compound reformed the π-network even at room temperature.

8.
Nat Commun ; 9(1): 4961, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470749

RESUMO

The aggregation of molecules plays an important role in determining their function. Electron microscopy and other methods can only characterize the variation of microstructure, but are not capable of monitoring conformational changes. These techniques are also complicated, expensive and time-consuming. Here, we demonstrate a simple method to monitor in-situ and in real-time the conformational change of (R)-1,1'-binaphthyl-based polymers during the aggregation process using circular dichroism. Based on results from molecular dynamics simulations and experimental circular dichroism measurements, polymers with "open" binaphthyl rings are found to show stronger aggregation-annihilated circular dichroism effects, with more negative torsion angles between the two naphthalene rings. In contrast, the polymers with "locked" rings show a more restrained aggregation-annihilated circular dichroism effect, with only a slight change of torsion angle. This work provides an approach to monitor molecular aggregation in a simple, accurate, and efficient way.

9.
Chem Sci ; 9(40): 7829-7834, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30429992

RESUMO

The development of new aggregation-induced emission (AIE) systems is a hot research topic, from which functional materials with diversified structures and properties are derived. Here, based on rare, non-emissive and highly electron-withdrawing heteroaromatics of 1,4,5,8-tetraazaanthracene (TAA), experimental and theoretical studies reveal that attaching phenyl rotors to TAA is crucial to creating a new N-type AIE core structure. Furthermore, by covalent attachment of electron-donating aromatic amines to the peripheries of the AIE core, red AIEgens could be obtained readily, which exhibit excellent photostability for long-term lysosome tracking. This work not only provides a new strategy to design heterocycle-containing AIEgens from non-emissive heteroaromatics but also stimulates more their applications as bio-imaging materials.

10.
Chem Sci ; 9(28): 6118-6125, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30210763

RESUMO

Notwithstanding the huge demand in bio-imaging and optoelectronics, the construction of highly emissive deep red/near infrared (DR/NIR) organic luminogens is still a big challenge because a narrow energy gap generally leads to low photoluminescence quantum yield. It is even more difficult to afford DR/NIR emitters in the solid state due to the aggregation caused quenching (ACQ) effect. In this work, we found that the direct attachment of a tetraphenylethylene substituted arylamine to the electron accepting 2,1,3-benzothiadiazole produces DR/NIR AIE luminogens with bright emission facilely and efficiently. And the emission wavelengths could be tuned from the red to the DR/NIR region by regulating the variety of the substituents. The long emission wavelength and high photoluminescence quantum yield of these AIEgens are ascribed to the effective intramolecular charge transfer and the suppressed intramolecular motion. Furthermore, non-doped OLEDs based on one of the AIEgens showed an EL emission at 684 nm with a large radiance of 5772 mW Sr-1 m-2 and an impressive external quantum efficiency (EQE) of 1.73%.

11.
J Am Chem Soc ; 140(16): 5588-5598, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29630372

RESUMO

Heterocyclic polymers have gained enormous attention for their unique functionalities and wide applications. In contrast with the well-studied polymer systems with five- or six-membered heterocycles, functional polymers with readily openable small-ring heterocycles have rarely been explored due to their large synthetic difficulty. Herein, a facile one-pot multicomponent polymerization to such polymers is developed. A series of functional polymers with multisubstituted and heteroatom-rich azetidine frameworks are efficiently generated at room temperature in high atom economy from handy monomers. The four-membered azetidine rings in the polymer skeletons can be easily transformed into amide and amidine moieties via a fast and efficient acid-mediated ring-opening reaction, producing brand-new polymeric materials with distinctive properties. All the as-prepared azetidine-containing polymers exhibit intrinsic visible luminescence in the solid state under long-wavelength UV irradiation even without conventionally conjugated structures. Such unconventional luminescence is attributed to the clusteroluminogens formed by through-space electronic interactions of heteroatoms and phenyl rings. All the obtained polymers show excellent optical transparency, high and tunable refractive indices, low optical dispersions and good photopatternability, which make them promising materials in various advanced electronic and optoelectronic devices. The ring-opened polymers can also function as a lysosome-specific fluorescent probe in biological imaging.

12.
Adv Mater ; 29(46)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29044736

RESUMO

Building humidity sensors possessing the features of diverse-configuration compatibility, and capability of measurement of spatial and temporal humidity gradients is of great interest for highly integrated electronics and wearable monitoring systems. Herein, a visual sensing approach based on fluorescent imaging is presented, by assembling aggregation-induced-emission (AIE)-active molecular rotors into a moisture-captured network; the resulting AIE humidity sensors are compatible with diverse applications, having tunable geometries and desirable architectures. The invisible information of relative humidity (RH) is transformed into different fluorescence colors that enable direct observation by the naked eyes based on the twisted intramolecular charge-transfer effect of the AIE-active molecular rotors. The resulting AIE humidity sensors show excellent performance in terms of good sensitivity, precise quantitative measurement, high spatial-temporal resolution, and fast response/recovery time. Their multiscale applications, such as regional environmental RH detection, internal humidity mapping, and sensitive human-body humidity sensing are demonstrated. The proposed humidity visualization strategy may provide a new insight to develop humidity sensors for various applications.

13.
J Am Chem Soc ; 139(45): 16264-16272, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29064249

RESUMO

π-Bonds connected with aromatic rings were generally believed as the standard structures for constructing highly efficient fluorophores. Materials without these typical structures, however, exhibited only low fluorescence quantum yields and emitted in the ultraviolet spectral region. In this work, three molecules, namely bis(2,4,5-trimethylphenyl)methane, 1,1,2,2-tetrakis(2,4,5-trimethylphenyl)ethane, and 1,1,2,2-tetraphenylethane, with nonconjugated structures and isolated phenyl rings were synthesized and their photophysical properties were systematically investigated. Interestingly, the emission spectra of these three molecules could be well extended to 600 nm with high solid-state quantum yields of up to 70%. Experimental and theoretical analyses proved that intramolecular through-space conjugation between the "isolated" phenyl rings played an important role for this abnormal phenomenon.

14.
Chemistry ; 23(59): 14911-14917, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28796370

RESUMO

The detection of food spoilage is a major concern in food safety as large amounts of food are transported globally. Direct analysis of food samples is often time-consuming and requires expensive analytical instrumentation. A much simpler and more cost-effective method for monitoring food fermentation is to detect biogenic amines generated as a by-product during food decomposition. In this work, a series of 1,2-dihydroquinoxaline derivatives (DQs) with aggregation-induced emission (AIE) characteristics were synthesised and their protonated forms, that is, H+ DQs, can be utilised for the sensitive detection of biogenic amines. For example, upon exposure to amine vapours, deprotonation occurs that converts the red-coloured, non-emissive H+ DQ2 back to its yellow-coloured, fluorescent parent form. The bimodal absorption and emission changes endow the system with high sensitivity, capable of detecting ammonia vapour at a concentration of as low as 690 ppb. Taking advantage of this, H+ DQ2 was successfully applied for the detection of food spoilage and was established as a robust and cost effective technique to monitor food safety.


Assuntos
Aminas Biogênicas/química , Análise de Alimentos/métodos , Quinoxalinas/química , Amônia/análise , Aminas Biogênicas/análise , Gases/química , Medições Luminescentes , Proteínas/química , Proteínas/metabolismo , Raios Ultravioleta
15.
Chem Sci ; 8(4): 2629-2639, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553498

RESUMO

In this work we have investigated the aggregation-induced emission (AIE) behaviour of 1,1,2,2-tetra(thiophen-2-yl)ethene (tetrathienylethene, TTE). The semi-locked and fully-locked derivatives (sl-TTE and fl-TTE) have been synthesized to better understand the mechanism behind the solid state photoluminescence of TTE. TTE is a typical AIEgen and its luminescence can be explained through the mechanistic understanding of the restriction of intramolecular motions (RIM). The emissive behaviour of TTE in the THF/water aggregates and crystal state have also been studied, revealing a remarkable red-shift of 35 nm. A similar red-shift emission of 37 nm from the THF/water aggregates to the crystal state is also observed for (E)-1,2-di(thiophen-2-yl)ethene (trans-dithienylethene, DTE). Crystal analysis has revealed that the emission red-shifts are ascribable to the presence of strong sulfur-sulfur (S···S) intra- and intermolecular interactions that are as close as 3.669 Å for TTE and 3.679 Å for DTE. These heteroatom interactions could help explain the photoluminescence of non-conventional luminophores as well as the luminescence of non-conjugated biomacromolecules.

16.
Acta Biomater ; 50: 334-343, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940196

RESUMO

Graphene and graphene oxides (GO), or their reduced forms, have been introduced in a variety of biosensing platforms and have exhibited enhanced performance levels in these forms. We herein report a DNA sensing platform consisting of aggregation-induced emission (AIE) molecules and complementary DNA (comDNA) adsorbed on GO. We experimentally turned the AIE molecule on and off by adjusting its distance, which correlates with DNA structures as shown in our computational results, from the GO sheet, which quenches depending on its distance from the graphene plane. The changes in florescence are reproducible, which demonstrates the probe's ability to identify the binding state of the DNA. Our molecular dynamics simulation results reveal strong π-π interactions between single-strand DNA (ssDNA) and GO, which enable the ssDNA molecule to move closer to the graphene oxide. This reduces the center of mass and binding free energies in the simulation. When hybridized with comDNA, the increased distance, evidenced by the reduced interaction, eliminates the quenching effect and turns on the AIE molecule. Our protocol use of the AIE molecule as a probe thus avoids the complicated steps involved in covalent functionalization and allows the rapid and label-free detection of DNA molecules. STATEMENT OF SIGNIFICANCE: A simple, rapid method of fluorescent measurement of DNA hybridization in the presence of graphene (oxide) is presented. Conventional fluorescent dyes offer high performance in biosensors. However, labeling procedures are synthetically demanding in time and resources making it less cost-effective. Molecules with aggregation-induced-emission (AIE) property have advantages over traditional fluorescent molecules because of their intrinsic preference for detection as a turn-on probe and their single-molecule detection ability. Previous work has shown AIE dyes act as excellent "label-free" bioprobes with high sensitivity but with limited selectivity. Graphene oxide (GO) with its unique optical properties and affinity to different kinds of biomolecules can be used as an auxiliary to enhance selectivity of AIE dyes. In this work, we report a label-free strategy to detect DNA of particular sequence by water-soluble AIE probes with the aid of GO, supported by the computational explanations for this phenomenon.


Assuntos
DNA Complementar/análise , Grafite/química , Sondas Moleculares/química , Simulação por Computador , Nanopartículas/química , Análise Espectral
18.
Chemistry ; 20(47): 15349-53, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25303769

RESUMO

Aggregation-induced emission (AIE) has been harnessed in many systems through the principle of restriction of intramolecular rotations (RIR) based on mechanistic understanding from archetypal AIE molecules such as tetraphenylethene (TPE). However, as the family of AIE-active molecules grows, the RIR model cannot fully explain some AIE phenomena. Here, we report a broadening of the AIE mechanism through analysis of 10,10',11,11'-tetrahydro-5,5'-bidibenzo[a,d][7]annulenylidene (THBDBA), and 5,5'-bidibenzo[a,d][7]annulenylidene (BDBA). Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV). A more generalized mechanistic understanding of AIE results by combining RIR and RIV into the principle of restriction of intramolecular motions (RIM).

19.
Chem Soc Rev ; 43(13): 4494-562, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24733611

RESUMO

Macromolecules with aggregation-induced emission (AIE) attributes are a class of luminescent materials that display enhanced emission when they are aggregated. They have attracted much attention because of their good solubility, processability, high emission efficiency in the aggregated states, etc. A large variety of AIE macromolecules have been developed, showing exponential growth of research interest in this field. This review summarizes the design principles and recent synthetic advancements, topological structures, as well as the frontiers of functionalities and potential applications of AIE macromolecules, especially fluorescence sensing, biological applications and optoelectronic applications, with an emphasis on the recent progress. New luminogenic systems without conventional chromophores displaying aggregated state emission are discussed. The highly dense clusters of heteroatoms with lone pair electrons in these systems may serve as the chromophore and are cited as "heterodox clusters". It is expected that the mechanistic insights into the AIE phenomena, based on the restriction of intramolecular motions and structure rigidification, can guide the future design of AIE materials with fascinating structures and functionalities.


Assuntos
Substâncias Macromoleculares/química , Luminescência
20.
Magn Reson Chem ; 47(3): 270-2, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19086010

RESUMO

The complete assignment of the (1)H and (13)C NMR spectra of the diastereomeric pairs of some alpha-arylsulfinyl-substituted N-methoxy-N-methylpropionamides with the substituents methoxy, methyl, chloro, nitro is reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA