Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 372024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38696722

RESUMO

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Assuntos
Retículo Endoplasmático , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Processamento de Proteína Pós-Traducional , Genes Reporter , Endopeptidases/genética , Endopeptidases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
2.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502857

RESUMO

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a generalizable platform that has become highly useful to investigate post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CL pro ), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...