Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Biotechnol ; 20(3): e3036, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36381284

RESUMO

Background: Autolysate products from yeast origin are very interesting for food, feed, cosmetic, pharmaceutical, and fermentation industries. The lysis process greatly influences the quality and efficiency of the final autolysates. Objectives: Here, we have compared four lysis methods based on autolysis, plasmolysis (with ethanol 1.5% (v/v) and coconut fatty acids 1% (w/w)) and hydrolysis (with alkaline protease 0.4 % (v/w)) on degrading the baker's yeast Saccharomyces cerevisiae. Materials and Methods: The efficiency of processes was evaluated according to the recovered solid and protein contents, release of intracellular materials, cell viability, microscopy imaging, degree of hydrolysis and electrophoresis studies. Results: Results showed that the increased recovered solids and proteins, as well as a higher degree of hydrolysis (DH) were obtained for the enzymatic hydrolyzed cells using alkaline protease. SDS-PAGE analysis also confirmed the results. Further, functionality of the final products by agglutination test showed that the hydrolyzed cells could effectively bind pathogenic bacteria compared to the other cell lysates. Conclusions: In conclusion, this work provides adequate evidence for efficiency of alkaline protease for producing the nutritional cell lysates from baker's S. cerevisiae used in food, feed, cosmetic, and pharmaceutical applications. Moreover, this was the first report on using coconut fatty acids and alkaline protease in lysis of baker's yeast.

2.
ACS Chem Biol ; 16(8): 1538-1545, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181382

RESUMO

The stabilities of Ca2+-regulated ctenophore and coelenterate apo-photoproteins, apo-mnemiopsin (apo-Mne) and apo-aequorin (apo-Aeq), respectively, were compared biochemically, biophysically, and structurally. Despite high degrees of structural and functional conservation, drastic variations in stability and structural dynamics were found between the two proteins. Irreversible thermoinactivation experiments were performed upon incubation of apo-photoproteins at representative temperatures. The inactivation rate constants (kinact) at 50 °C were determined to be 0.001 and 0.004 min-1 for apo-Mne and apo-Aeq, respectively. Detailed analysis of the inactivation process suggests that the higher thermostability of apo-Mne is due to the higher activation energy (Ea) and subsequently higher values of ΔH* and ΔG* at a given temperature. According to molecular dynamics simulation studies, the higher hydrogen bond, electrostatic, and van der Waals energies in apo-Mne can validate the relationship between the thermal adaptation of apo-Mne and the energy barrier for the inactivation process. Our results show that favorable residues for protein thermostability such as hydrophobic, charged, and adopted α-helical structure residues are more frequent in the apo-Mne structure. Although the effect of acrylamide on fluorescence quenching suggests that the local flexibility in regions around Trp and Tyr residues of apo-Aeq is higher than that of apo-Mne, which results in it having a better ability to penetrate acrylamide molecules, the root-mean-square fluctuation of helix A in apo-Mne is higher than that in apo-Aeq. It seems that the greater flexibility of apo-Mne in these regions may be considered as a determining factor, affecting the thermal stability of apo-Mne through a balance between structural rigidity and flexibility.


Assuntos
Cnidários/química , Ctenóforos/química , Proteínas Luminescentes/química , Estabilidade Proteica , Animais , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Maleabilidade , Conformação Proteica , Termodinâmica
3.
World J Microbiol Biotechnol ; 36(5): 68, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32328815

RESUMO

Saccharomyces cerevisiae is being used for long as a rich source of proteins, sugars, nucleotides, vitamins and minerals. Autolyzed and hydrolyzed yeast biomass has found numerous applications in the health food industry as well as livestock feeds. Here, we have compared three lysis methods for production of yeast lysates using autolysis, plasmolysis (ethyl acetate 1.5%), and enzymatic hydrolysis (Alcalase 0.2%). The efficiency of each process was compared according to soluble solid and protein contents, cell lysis monitoring, and release of intracellular materials, cell viability and microscopic analysis. Results showed that plasmolysis by ethyl acetate was found to be more efficient compared to autolysis, with a higher recovery of yeast extract (YE) content. In comparison, the content of released solids and proteins were higher during the enzymatic hydrolysis using Alcalase compared to autolysis and plasmolysis treatments. The highest decrease in optical density of 600 nm was monitored for the hydrolyzed cells. Besides, we defined "Degree of Leakage (DL)" as a new index of the lysis process, referring to the percentage of total released proteins from the cells and it was estimated to about 65.8%, which represents an appropriate indicator of the cell lysis. The biochemical and biophysical properties of the hydrolyzed yeast product as well as its biological activity (free radical scavenging activity and bacterial binding capacity) suggest that Alcalase could be used to accelerate the lysis of yeast cells and release the valuable intracellular components used for foodstuffs, feed and fermentation media applications. Production of baker's yeast lysates using autolysis, plasmolysis, and enzymatic hydrolysis methods.


Assuntos
Autólise , Hidrólise , Saccharomyces cerevisiae/metabolismo , Acetatos , Biomassa , Meios de Cultura , Fermentação , Microbiologia Industrial/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...