Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 5(1): 397, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484403

RESUMO

Single-cells grow by increasing their biomass and size. Here, we report that while mass and size accumulation rates of single Escherichia coli cells are exponential, their density and, thus, the levels of macromolecular crowding fluctuate during growth. As such, the average rates of mass and size accumulation of a single cell are generally not the same, but rather cells differentiate into increasing one rate with respect to the other. This differentiation yields a density homeostasis mechanism that we support mathematically. Further, we observe that density fluctuations can affect the reproduction rates of single cells, suggesting a link between the levels of macromolecular crowding with metabolism and overall population fitness. We detail our experimental approach and the "invisible" microfluidic arrays that enabled increased precision and throughput. Infections and natural communities start from a few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic variability into consideration.


Assuntos
Escherichia coli , Reprodução , Escherichia coli/metabolismo , Homeostase , Substâncias Macromoleculares/metabolismo
3.
Knowl Based Syst ; 228: 107242, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36570870

RESUMO

Undoubtedly, coronavirus (COVID-19) has caused one of the biggest challenges of all times. The ongoing COVID-19 pandemic has caused more than 150 million infected cases and one million deaths globally as of May 5, 2021. Understanding the sentiment of people expressed in their social media comments can help in monitoring, controlling, and ultimately eradicating the disease. This is a sensitive matter as the threat of infectious disease significantly affects the way people think and behave in various ways. In this study, we proposed a novel method based on the fusion of four deep learning and one classical supervised machine learning model for sentiment analysis of coronavirus-related tweets from eight countries. Also, we analyzed coronavirus-related searches using Google Trends to better understand the change in the sentiment pattern at different times and places. Our findings reveal that the coronavirus attracted the attention of people from different countries at different times in varying intensities. Also, the sentiment in their tweets is correlated to the news and events that occurred in their countries including the number of newly infected cases, number of recoveries and deaths. Moreover, common sentiment patterns can be observed in various countries during the spread of the virus. We believe that different social media platforms have great impact on raising people's awareness about the importance of this disease as well as promoting preventive measures among people in the community.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38013678

RESUMO

Alaska is at the forefront of climate change and subject to salient challenges including energy consumption. It is important to understand Alaskans' perceptions and opinions about energy consumption to solve Alaska's domestic energy problems and creating a sustainable future. However, it is challenging to collect public opinions about energy consumption using conventional survey methods, which are often expensive, labor-intensive, and slow. This study utilizes information-rich Twitter data to investigate Alaskans' perceptions and opinions on various energy sources and in particular clean energy sources. Using the geotagged Twitter data collected in Alaska from 2014 to 2016, a lexicon-based sentiment analysis approach was first applied to analyze the polarity in the expressed opinions. Further, a novel fuzzy-based theory is employed to derive the sentiment of the opinion in each tweet. The results indicate that there is a valuable growth rate for a set of energy-related keywords, such as "sun", "power", and "nuclear". The rank of top 20 renewable energy-related keywords shows the word "Tidal" has the highest ranking followed by "solar panel". Moreover, the attention to various types of energy is increasing dramatically among Alaskans. Importantly, Alaskans' attitudes toward energy and renewable energy changed positively from 2014 to 2016, indicating that Alaskans' energy choices are more acceptive towards or even favor renewable energy in the future.

5.
PLoS Genet ; 15(11): e1008458, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710603

RESUMO

While microbiologists often make the simplifying assumption that genotype determines phenotype in a given environment, it is becoming increasingly apparent that phenotypic heterogeneity (in which one genotype generates multiple phenotypes simultaneously even in a uniform environment) is common in many microbial populations. The importance of phenotypic heterogeneity has been demonstrated in a number of model systems involving binary phenotypic states (e.g., growth/non-growth); however, less is known about systems involving phenotype distributions that are continuous across an environmental gradient, and how those distributions change when the environment changes. Here, we describe a novel instance of phenotypic diversity in tolerance to a metabolic toxin within wild-type populations of Methylobacterium extorquens, a ubiquitous phyllosphere methylotroph capable of growing on the methanol periodically released from plant leaves. The first intermediate in methanol metabolism is formaldehyde, a potent cellular toxin that is lethal in high concentrations. We have found that at moderate concentrations, formaldehyde tolerance in M. extorquens is heterogeneous, with a cell's minimum tolerance level ranging between 0 mM and 8 mM. Tolerant cells have a distinct gene expression profile from non-tolerant cells. This form of heterogeneity is continuous in terms of threshold (the formaldehyde concentration where growth ceases), yet binary in outcome (at a given formaldehyde concentration, cells either grow normally or die, with no intermediate phenotype), and it is not associated with any detectable genetic mutations. Moreover, tolerance distributions within the population are dynamic, changing over time in response to growth conditions. We characterized this phenomenon using bulk liquid culture experiments, colony growth tracking, flow cytometry, single-cell time-lapse microscopy, transcriptomics, and genome resequencing. Finally, we used mathematical modeling to better understand the processes by which cells change phenotype, and found evidence for both stochastic, bidirectional phenotypic diversification and responsive, directed phenotypic shifts, depending on the growth substrate and the presence of toxin.


Assuntos
Heterogeneidade Genética , Variação Genética/genética , Metanol/metabolismo , Methylobacterium extorquens/genética , Tolerância a Medicamentos/genética , Formaldeído/química , Formaldeído/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genótipo , Methylobacterium extorquens/metabolismo , Fenótipo , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...