Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063293

RESUMO

Magnetoimpedance (MI) in Co-based microwires with an amorphous and partially crystalline state was investigated at elevated frequencies (up to several GHz), with particular attention paid to the influence of tensile stress on the MI behavior, which is called stress-MI. Two mechanisms of MI sensitivity related to the DC magnetization re-orientation and AC permeability dispersion were discussed. Remarkable sensitivity of impedance changes with respect to applied tensile stress at GHz frequencies was obtained in partially crystalline wires subjected to current annealing. Increasing the annealing current enhanced the axial easy anisotropy of a magnetoelastic origin, which made it possible to increase the frequency of large stress-MI: for 90mA-annealed wire, the impedance at 2 GHz increased by about 300% when a stress of 450 MPa was applied. Potential applications included sensing elements in stretchable substrates for flexible electronics, wireless sensors, and tunable smart materials. For reliable microwave measurements, an improved SOLT (short-open-load-thru) calibration technique was developed that required specially designed strip cells as wire holders. The method made it possible to precisely measure the impedance characteristics of individual wires, which can be further employed to characterize the microwave scattering at wire inclusions used as composites fillers.

2.
Sensors (Basel) ; 19(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766419

RESUMO

Amorphous ferromagnetic materials in the form of microwires are of interest for the development of various sensors. This paper analyzes and argues for the use of microwires of two basic compositions of Co71Fe5B11Si10Cr3 and Fe3.9(4.9)Co64.82B10.2Si12Cr9(8)Mo0.08 as stress/strain and temperature sensors, respectively. The following properties make them suitable for innovative applications: miniature dimensions, small coercivity, low anisotropy and magnetostriction, tunable magnetic structure, magnetic anisotropy, and Curie temperature by annealing. For example, these sensors can be used for testing the internal stress/strain condition of polymer composite materials and controlling the temperature of hypothermia treatments. The sensing operation is based on the two fundamental effects: the generation of higher frequency harmonics of the voltage pulse induced during remagnetization in wires demonstrating magnetic bistability, and magnetoimpedance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...