Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7447, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366864

RESUMO

Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic dipolar interactions, which tend to favor large skyrmions. Tuning DMI is essential to control skyrmion properties, with symmetry breaking at interfaces offering the greatest flexibility. However, in contrast to the ferromagnet case, few studies have investigated interfacial DMI in ferrimagnets. Here we present a systematic study of DMI in ferrimagnetic CoGd films by Brillouin light scattering. We demonstrate the ability to control DMI by the CoGd cap layer composition, the stack symmetry and the ferrimagnetic layer thickness. The DMI thickness dependence confirms its interfacial nature. In addition, magnetic force microscopy reveals the ability to tune DMI in a range that stabilizes sub-100 nm skyrmions at room temperature in zero field. Our work opens new paths for controlling interfacial DMI in ferrimagnets to nucleate and manipulate skyrmions.

2.
Sci Adv ; 6(3): eaay8717, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010774

RESUMO

The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.

3.
J Phys D Appl Phys ; 49(42)2016.
Artigo em Inglês | MEDLINE | ID: mdl-33100381

RESUMO

Multilayers of [Co/Ni(t)/Co/Pt]×8 with varying Ni thickness were investigated for possible use as a free layer in magnetic tunnel junctions and spintronics devices. The thickness t of the Ni sub-layer was varied from 0.3 nm to 0.9 nm and the resulting magnetic properties were compared with (Co/Ni) and (Co/Pt) multilayers. As determined from magnetic force microscopy, magnetometry and ferromagnetic resonance measurements, all multilayers exhibited perpendicular magnetic anisotropy. Compared with (Co/Pt) multilayers, the sample with t of 0.9 nm showed almost the same anisotropy field of µ 0 H k = 1.15 T but the damping constant was 40% lower. These characteristics make these multilayers attractive for spin torque based magnetoresistive devices with perpendicular anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...