Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 37: 78-87, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087182

RESUMO

PURPOSE: Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS: At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS: A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION: Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.


Assuntos
Radiação Cósmica , Prótons , Humanos , Coelhos , Masculino , Ratos , Camundongos , Animais , Lactente , Oxigênio , Íons , Coração/efeitos da radiação , Relação Dose-Resposta à Radiação
2.
Life (Basel) ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983950

RESUMO

Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-ß)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-ß inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-ß inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-ß inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-ß inhibitor do point to a role for TGF-ß in maintaining markers of immune cells in the heart after exposure to GCR.

3.
Life Sci Space Res (Amst) ; 32: 105-112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065756

RESUMO

PURPOSE: Astronauts in space vehicles beyond low-Earth orbit will be exposed to high charge and energy (HZE) ions, and there is concern about potential adverse effects on the cardiovascular system. Thus far, most animal studies that assess cardiac effects of HZE particles have included only males. This study assessed the effects of oxygen ions (16O) as a representative ion of the intravehicular radiation environment on the heart of female mice. MATERIALS AND METHODS: Female C57BL/6 J mice at 6 months of age were exposed to 16O (600 MeV/n) at 0.25-0.26 Gy/min to a total dose of 0, 0.1, or 0.25 Gy. Cardiac function and abdominal aorta blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess collagen deposition and markers of immune cells. RESULTS: Ultrasonography revealed increased left ventricle mass, diastolic volume and diameter but there was no change in the abdominal aorta. There was no indication of cardiac fibrosis however, a 75 kDa peptide of left ventricular collagen type III and α-smooth muscle cell actin were increased suggesting some remodeling had occurred. Left ventricular protein levels of the T-cell marker CD2 was significantly increased at all time points, while the neutrophil marker myeloperoxidase was decreased at 2 weeks and 9 months. CONCLUSIONS: These results taken together suggest 16O ion exposure did not result in cardiac fibrosis or cardiac dysfunction in female mice. However, it does appear mild cardiac remodeling occurs in response to HZE radiation.


Assuntos
Radiação Cósmica , Oxigênio , Animais , Feminino , Coração , Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Life Sci Space Res (Amst) ; 31: 43-50, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689949

RESUMO

PURPOSE: While there is concern about degenerative tissue effects of exposure to space radiation during deep-space missions, there are no pharmacological countermeasures against these adverse effects. γ-Tocotrienol (GT3) is a natural form of vitamin E that has anti-oxidant properties, modifies cholesterol metabolism, and has anti-inflammatory and endothelial cell protective properties. The purpose of this study was to test whether GT3 could mitigate cardiovascular effects of oxygen ion (16O) irradiation in a mouse model. MATERIALS AND METHODS: Male C57BL/6 J mice were exposed to whole-body 16O (600 MeV/n) irradiation (0.26-0.33 Gy/min) at doses of 0 or 0.25 Gy at 6 months of age and were followed up to 9 months after irradiation. Animals were administered GT3 (50 mg/kg/day s.c.) or vehicle, on Monday - Friday starting on day 3 after irradiation for a total of 16 administrations. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters. Cardiac tissue remodeling and inflammatory infiltration were assessed with histology and immunoblot analysis at 2 weeks, 3 and 9 months after radiation. RESULTS: GT3 mitigated the effects of 16O radiation on cardiac function, the expression of a collagen type III peptide, and markers of mast cells, T-cells and monocytes/macrophages in the left ventricle. CONCLUSIONS: GT3 may be a potential countermeasure against late degenerative tissue effects of high-linear energy transfer radiation in the heart.


Assuntos
Oxigênio , Protetores contra Radiação , Animais , Cromanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vitamina E/análogos & derivados , Vitamina E/farmacologia
5.
Antioxidants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065524

RESUMO

Ionizing radiation (IR) is known to cause fetal programming, but the physiological effects of low-dose IR are not fully understood. This study examined the effect of low (50 mGy) to non-lethal (300 and 1000 mGy) radiation exposure during late gestation on cardiac metabolism and oxidative stress in adult offspring. Pregnant C57BL/6J mice were exposed to 50, 300, or 1000 mGy of gamma radiation or Sham irradiation on gestational day 15. Sixteen weeks after birth, 18F-Fluorodeoxyglucose (FDG) uptake was examined in the offspring using Positron Emission Tomography imaging. Western blot was used to determine changes in oxidative stress, antioxidants, and insulin signaling related proteins. Male and female offspring from irradiated dams had lower body weights when compared to the Sham. 1000 mGy female offspring demonstrated a significant increase in 18F-FDG uptake, glycogen content, and oxidative stress. 300 and 1000 mGy female mice exhibited increased superoxide dismutase activity, decreased glutathione peroxidase activity, and decreased reduced/oxidized glutathione ratio. We conclude that non-lethal radiation during late gestation can alter glucose uptake and increase oxidative stress in female offspring. These data provide evidence that low doses of IR during the third trimester are not harmful but higher, non-lethal doses can alter cardiac metabolism later in life and sex may have a role in fetal programming.

6.
Can J Physiol Pharmacol ; 97(9): 880-884, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365282

RESUMO

The objective of this study was to analyze the cardioprotective roles of 3 wild blueberry genotypes and one commercial blueberry genotype by measuring markers of oxidative stress and cell death in H9c2 cardiac cells exposed to doxorubicin. Ripe berries of the 3 wild blueberry genotypes were collected from a 10-year-old clearcut forest near Nipigon, Ontario, Canada (49°1'39″N, 87°52'21″W), whereas the commercial blueberries were purchased from a local grocery store. H9c2 cardiac cells were incubated with 15 µg gallic acid equivalent/mL blueberry extract for 4 h followed by 5 µM doxorubicin for 4 h, and oxidative stress and active caspase 3/7 were analyzed. The surface area as well as total phenolic content was significantly higher in all 3 wild blueberry genotypes compared with the commercial species. Increase in oxidative stress due to doxorubicin exposure was attenuated by pre-treatment with all 3 types of wild blueberries but not by commercial berries. Furthermore, increase in caspase 3/7 activity was also attenuated by all 3 wild genotypes as well. These data demonstrate that wild blueberry extracts can attenuate doxorubicin-induced damage to H9c2 cardiomyocytes through reduction in oxidative stress and apoptosis, whereas the commercial blueberry had little effect.


Assuntos
Mirtilos Azuis (Planta)/química , Citoproteção/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Extratos Vegetais/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...