Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(13): 2794-2801.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343557

RESUMO

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied marine mollusks that exhibit an array of interesting biological phenomena, including dynamic camouflage, complex social behaviors, prehensile regenerating arms, and large brains capable of learning, memory, and problem-solving.1,2,3,4,5,6,7,8,9,10 The dwarf cuttlefish, Sepia bandensis, is a promising model cephalopod species due to its small size, substantial egg production, short generation time, and dynamic social and camouflage behaviors.11 Cuttlefish dynamically camouflage to their surroundings by changing the color, pattern, and texture of their skin. Camouflage is optically driven and is achieved by expanding and contracting hundreds of thousands of pigment-filled saccules (chromatophores) in the skin, which are controlled by motor neurons emanating from the brain. We generated a dwarf cuttlefish brain atlas using magnetic resonance imaging (MRI), deep learning, and histology, and we built an interactive web tool (https://www.cuttlebase.org/) to host the data. Guided by observations in other cephalopods,12,13,14,15,16,17,18,19,20 we identified 32 brain lobes, including two large optic lobes (75% the total volume of the brain), chromatophore lobes whose motor neurons directly innervate the chromatophores of the color-changing skin, and a vertical lobe that has been implicated in learning and memory. The brain largely conforms to the anatomy observed in other Sepia species and provides a valuable tool for exploring the neural basis of behavior in the experimentally facile dwarf cuttlefish.


Assuntos
Cromatóforos , Sepia , Animais , Sepia/fisiologia , Decapodiformes , Encéfalo , Cromatóforos/fisiologia , Pigmentação da Pele
2.
Nat Commun ; 7: 10465, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842965

RESUMO

Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/metabolismo , Músculo Esquelético/patologia , Degeneração Neural/genética , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/genética , Medula Espinal/patologia , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Músculo Esquelético/inervação , Mutação , Degeneração Neural/patologia , Fenótipo , Medula Espinal/metabolismo
3.
Neuron ; 43(3): 313-9, 2004 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15294140

RESUMO

Sexually dimorphic behaviors are likely to involve neural pathways that express the androgen receptor (AR). We have genetically modified the AR locus to visualize dimorphisms in neuronal populations that express AR. Analysis of AR-positive neurons reveals both known dimorphisms in the preoptic area of the hypothalamus and the bed nucleus of the stria terminalis as well as novel dimorphic islands in the basal forebrain with a clarity unencumbered by the vast population of AR-negative neurons. This genetic approach allows the visualization of dimorphic subpopulations of AR-positive neurons along with their projections and may ultimately permit an association between neural circuits and specific dimorphic behaviors.


Assuntos
Encéfalo/fisiologia , Receptores Androgênicos/fisiologia , Caracteres Sexuais , Animais , Química Encefálica/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Comportamento Sexual Animal/fisiologia
4.
Structure ; 12(8): 1355-60, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296729

RESUMO

The expression of mammalian proteins in sufficient abundance and quality for structural studies often presents formidable challenges. Many express poorly in bacterial systems, whereas it can be time consuming and expensive to produce them from cells of higher organisms. Here we describe a procedure for the direct selection of stable mammalian cell lines that express proteins of interest in high yield. Coexpression of a marker protein, such as green fluorescent protein, is linked to that of the desired protein through an internal ribosome entry site in the vector that is transfected into cells in culture. The coexpressed marker is used to select for highly expressing clonal cell lines. Applications are described to a membrane protein, the 5HT2c serotonin receptor, and to a secreted cysteine-rich protein, resistin. Besides providing an expeditious means for producing mammalian proteins for structural work, the resulting cell lines also readily support tests of functional properties and structure-inspired hypotheses.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Hormônios Ectópicos/biossíntese , Proteínas de Membrana/biossíntese , Receptores de Serotonina/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Western Blotting , Células Cultivadas , Citometria de Fluxo , Humanos , Camundongos , Ratos , Proteínas Recombinantes/metabolismo , Resistina
5.
Cell ; 117(6): 801-15, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15186780

RESUMO

Individual olfactory sensory neurons express only a single odorant receptor from a large family of genes, and this singularity is an essential feature in models of olfactory perception. We have devised a genetic strategy to examine the stability of receptor choice. We observe that immature olfactory sensory neurons that express a given odorant receptor can switch receptor expression, albeit at low frequency. Neurons that express a mutant receptor gene switch receptor transcription with significantly greater probability, suggesting that the expression of a functional odorant receptor elicits a feedback signal that terminates switching. This process of receptor gene switching assures that a neuron will ultimately express a functional receptor and that the choice of this receptor will remain stable for the life of the cell.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Olfato/genética , Ativação Transcricional/genética , Animais , Apoptose/genética , Linhagem da Célula/genética , Retroalimentação Fisiológica/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Integrases/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Virais/metabolismo
6.
Cell ; 114(3): 311-22, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12914696

RESUMO

Olfactory sensory neurons expressing a given odorant receptor (OR) project with precision to specific glomeruli in the olfactory bulb, generating a topographic map. In this study, we demonstrate that neurons expressing different ORs express different levels of ephrin-A protein on their axons. Moreover, alterations in the level of ephrin-A alter the glomerular map. Deletion of the ephrin-A5 and ephrin-A3 genes posteriorizes the glomerular locations for neurons expressing either the P2 or SR1 receptor, whereas overexpression of ephrin-A5 in P2 neurons results in an anterior shift in their glomeruli. Thus the ephrin-As are differentially expressed in distinct subpopulations of neurons and are likely to participate, along with the ORs, as one of a complement of guidance receptors governing the targeting of like axons to precise locations in the olfactory bulb.


Assuntos
Axônios/metabolismo , Efrina-A3/metabolismo , Efrina-A5/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/metabolismo , Sensação/fisiologia , Animais , Efrina-A3/genética , Efrina-A5/genética , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Bulbo Olfatório/anatomia & histologia , Proteína de Marcador Olfatório , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...