Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 13(10): 844-856.e4, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36265470

RESUMO

Genomic epidemiology is now widely used for viral outbreak investigations. Still, this methodology faces many challenges. First, few methods account for intra-host viral diversity. Second, maximum parsimony principle continues to be employed for phylogenetic inference of transmission histories, even though maximum likelihood or Bayesian models are usually more consistent. Third, many methods utilize case-specific data, such as sampling times or infection exposure intervals. This impedes study of persistent infections in vulnerable groups, where such information has a limited use. Finally, most methods implicitly assume that transmission events are independent, although common source outbreaks violate this assumption. We propose a maximum likelihood framework, SOPHIE, based on the integration of phylogenetic and random graph models. It infers transmission networks from viral phylogenies and expected properties of inter-host social networks modeled as random graphs with given expected degree distributions. SOPHIE is scalable, accounts for intra-host diversity, and accurately infers transmissions without case-specific epidemiological data.


Assuntos
Surtos de Doenças , Genômica , Filogenia , Teorema de Bayes
2.
Infect Genet Evol ; 95: 105087, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592415

RESUMO

The novel coronavirus SARS-CoV-2 was first detected in China in December 2019 and has rapidly spread around the globe. The World Health Organization declared COVID-19 a pandemic in March 2020 just three months after the introduction of the virus. Individual nations have implemented and enforced a variety of social distancing interventions to slow the virus spread, that had different degrees of success. Understanding the role of non-pharmaceutical interventions (NPIs) on COVID-19 transmission in different settings is highly important. While most such studies have focused on China, neighboring Asian counties, Western Europe, and North America, there is a scarcity of studies for Eastern Europe. The aim of this epidemiological study is to fill this gap by analyzing the characteristics of the first months of the epidemic in Ukraine using agent-based modelling and phylodynamics. Specifically, first we studied the dynamics of COVID-19 incidence and mortality and explored the impact of epidemic NPIs. Our stochastic model suggests, that even a small delay of weeks could have increased the number of cases by up to 50%, with the potential to overwhelm hospital systems. Second, the genomic data analysis suggests that there have been multiple introductions of SARS-CoV-2 into Ukraine during the early stages of the epidemic. Our findings support the conclusion that the implemented travel restrictions may have had limited impact on the epidemic spread. Third, the basic reproduction number for the epidemic that has been estimated independently from case counts data and from genomic data suggest sustained intra-country transmissions.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Genoma Viral , Modelos Estatísticos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , COVID-19/virologia , China/epidemiologia , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Humanos , Incidência , América do Norte/epidemiologia , Filogenia , Distanciamento Físico , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Viagem/estatística & dados numéricos , Ucrânia/epidemiologia
3.
medRxiv ; 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34373859

RESUMO

The novel coronavirus SARS-CoV-2 was first detected in China in December 2019 and has rapidly spread around the globe. The World Health Organization declared COVID-19 a pandemic in March 2020 just three months after the introduction of the virus. Individual nations have implemented and enforced a variety of social distancing interventions to slow the virus spread, that had different degrees of success. Understanding the role of non-pharmaceutical interventions (NPIs) on COVID-19 transmission in different settings is highly important. While most such studies have focused on China, neighboring Asian counties, Western Europe, and North America, there is a scarcity of studies for Eastern Europe. The aim of this study is to contribute to filling this gap by analyzing the characteristics of the first months of the epidemic in Ukraine using agent-based modelling and phylodynamics. Specifically, first we studied the dynamics of COVID-19 incidence and mortality and explored the impact of epidemic NPIs. Our stochastic model suggests, that even a small delay of weeks could have increased the number of cases by up to 50%, with the potential to overwhelm hospital systems. Second, the genomic data analysis suggests that there have been multiple introductions of SARS-CoV-2 into Ukraine during the early stages of the epidemic. Our findings support the conclusion that the implemented travel restrictions may have had limited impact on the epidemic spread. Third, the basic reproduction number for the epidemic that has been estimated independently from case counts data and from genomic data suggest sustained intra-country transmissions.

4.
medRxiv ; 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33907756

RESUMO

Since the emergence of COVID-19, a series of non-pharmaceutical interventions (NPIs) has been implemented by governments and public health authorities world-wide to control and curb the ongoing pandemic spread. From that perspective, Belarus is one of a few countries with a relatively modern healthcare system, where much narrower NPIs have been put in place. Given the uniqueness of this Belarusian experience, the understanding its COVID-19 epidemiological dynamics is essential not only for the local assessment, but also for a better insight into the impact of different NPI strategies globally. In this work, we integrate genomic epidemiology and surveillance methods to investigate the emergence and spread of SARS-CoV-2 in the country. The observed Belarusian SARS-CoV-2 genetic diversity originated from at least eighteen separate introductions, at least five of which resulted in on-going domestic transmissions. The introduction sources represent a wide variety of regions, although the proportion of regional virus introductions and exports from/to geographical neighbors appears to be higher than for other European countries. Phylodynamic analysis indicates a moderate reduction in the effective reproductive number ℛ e after the introduction of limited NPIs, with the reduction magnitude generally being lower than for countries with large-scale NPIs. On the other hand, the estimate of the Belarusian ℛ e at the early epidemic stage is comparable with this number for the neighboring ex-USSR country of Ukraine, where much broader NPIs have been implemented. The actual number of cases by the end of May, 2020 was predicted to be 2-9 times higher than the detected number of cases.

5.
Commun Med (Lond) ; 1: 31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602211

RESUMO

Background: Non-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies. Methods: We integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection. Results: Here we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader. Conclusions: The example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...