Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(50): 13244-8, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18844335

RESUMO

The current case study focuses on the generation, identification, and characterization of two representative mono- and disubstituted alkyl phosphonatocarbenes by means of matrix isolation techniques in conjunction with density functional theory [B3LYP/6-311++G(d,p)] and coupled cluster [CCSD(T)/cc-pVXZ, X = D, T] computations. The EPR measurements identify both carbenes as triplet ground-state species with D values of 0.660 and 0.623 cm(-1), respectively, exhibiting persistency toward intramolecular reactions (the EPR signal observable in perfluoromethylcyclohexane up to around 70 K for the disubstituted molecule). While the reaction of the carbene center of the conformationally rich tetramethyl bisphosphonatocarbene with the CH bonds of the methyl groups leads to phosphaoxetane at room temperature, its fragmentation via a Wittig-type reaction during high vacuum flash pyrolysis (HVFP) results in dimethyl vinylphosphonate and methyl metaphosphate. The latter has been observed for the first time as an isolated entity.

2.
J Org Chem ; 72(25): 9533-40, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17994760

RESUMO

Based on systematic ab initio (CCSD(T)/cc-pVDZ) studies of substituent effects, we present a concept for the construction of electronically stabilized triplet ground state carbenes with singlet-triplet energy separations (DeltaEST) exceeding that of methylene. Sterically demanding and conjugating substituents were excluded from the selection of model compounds under investigation, as these either destabilize both the singlet and the triplet states or delocalize unpaired spins away from the carbene carbon. Negative partial charges on the carbene center allow for the prediction of the electronic stabilization of substituted carbenes. To decrease carbene reactivity, we chose beta-substituents with strong polar bonds. Among them, highly electronegative elements such as fluorine and oxygen enlarge the DeltaEST value with respect to hydrogen, while chlorine does not due to p-orbital participation.


Assuntos
Elétrons , Metano/análogos & derivados , Modelos Químicos , Teoria Quântica , Simulação por Computador , Hidrocarbonetos/química , Metano/química , Estrutura Molecular
3.
Chemistry ; 12(28): 7411-20, 2006 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-16933255

RESUMO

To probe whether tetrahedrane should be isolable the thermodynamics and kinetics of C4H4 singlet and triplet structures were studied extensively at the CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVDZ//B3 LYP/6-311G**, and B3 LYP/6-311G** levels of theory. The reaction of cyclopropene with atomic carbon, which was previously suggested to involve tetrahedrane as a reactive intermediate, was re-examined experimentally with low-temperature matrix-isolation techniques. While experimental and theoretical results exclude the intermediacy of tetrahedrane in the above reaction, it is predicted to be an isolable molecule. Among the many C4H4 species, we pay special attention to the electronic effects on the ground state multiplicity of the respective carbenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA