Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 92(20): 207001, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15169374

RESUMO

We use angle-resolved photoemission with circularly polarized excitation to demonstrate that in the 5 x 1 superstructure-free (Pb,Bi)(2)Sr(2)CaCu(2)O(8+delta) (Pb-Bi2212) material there are no signatures of time-reversal symmetry breaking in the sense of the criteria developed earlier [Nature (London) 416, 610 (2002)]]. The dichroic signal retains reflection antisymmetry as a function of temperature and doping and in all mirror planes, precisely defined by the experimental dispersion at low energies. The obtained results demonstrate that the signatures of time-reversal symmetry violation in pristine Bi2212, as determined by angle-resolved photoemission spectroscopy, are not a universal feature of all cuprate superconductors.

2.
Phys Rev Lett ; 89(7): 077003, 2002 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12190550

RESUMO

From detailed high-resolution measurements of the photon energy dependence of the (pi,0) superconducting-state photoemission spectrum of the bilayer Bi high-temperature superconductors, we show that the famous peak-dip-hump line shape is dominated by a superposition of spectral features originating from different electronic states which reside at different binding energies, but are each describable by essentially identical single-particle spectral functions. The previously identified bilayer-split CuO2 bands are the culprit: with the "superconducting" peak being due to the antibonding band, while the hump is mainly formed by its bonding bilayer-split counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...