Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864257

RESUMO

The foreign body reaction (FBR) to biomaterials results in fibrous encapsulation. Excessive capsule fibrosis (capsular contracture) is a major challenge to the long-term stability of implants. Clinical data suggests that the tissue type in contact with silicone breast implants alters susceptibility to developing capsular contracture; however, the tissue-specific inflammatory and fibrotic characteristics of capsule have not been well characterized at the cellular and molecular level. In this study, 60 breast implant capsule samples are collected from patients and stratified by the adjacent tissue type including subcutaneous tissue, glandular breast tissue, or muscle tissue. Capsule thickness, collagen organization, immune and fibrotic cellular populations, and expression of inflammatory and fibrotic markers is quantified with histological staining, immunohistochemistry, and real-time PCR. The findings suggest there are significant differences in M1-like macrophages, CD4+ T cells, CD26+ fibroblasts, and expression of IL-1ß, IL-6, TGF-ß, and collagen type 1 depending on the tissue type abutting the implant. Subglandular breast implant capsule displays a significant increase in inflammatory and fibrotic markers. These findings suggest that the tissue microenvironment contributes uniquely to the FBR. This data could provide new avenues for research and clinical applications to improve the site-specific biocompatibility and longevity of implantable devices.

2.
ACS Biomater Sci Eng ; 10(5): 3006-3016, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640484

RESUMO

Soft implantable devices are crucial to optimizing form and function for many patients. However, periprosthetic capsule fibrosis is one of the major challenges limiting the use of implants. Currently, little is understood about how spatial and temporal factors influence capsule physiology and how the local capsule environment affects the implant structure. In this work, we analyzed breast implant capsule specimens with staining, immunohistochemistry, and real-time polymerase chain reaction to investigate spatiotemporal differences in inflammation and fibrosis. We demonstrated that in comparison to the anterior capsule against the convex surface of breast implants, the posterior capsule against the flat surface of the breast implant displays several features of a dysregulated foreign body reaction including increased capsule thickness, abnormal extracellular remodeling, and infiltration of macrophages. Furthermore, the expression of pro-inflammatory cytokines increased in the posterior capsule across the lifespan of the device, but not in the anterior capsule. We also analyzed the surface oxidation of breast explant samples with XPS analysis. No significant differences in surface oxidation were identified either spatially or temporally. Collectively, our results support spatiotemporal heterogeneity in inflammation and fibrosis within the breast implant capsule. These findings presented here provide a more detailed picture of the complexity of the foreign body reaction surrounding implants destined for human use and could lead to key research avenues and clinical applications to treat periprosthetic fibrosis and improve device longevity.


Assuntos
Implantes de Mama , Fibrose , Reação a Corpo Estranho , Propriedades de Superfície , Implantes de Mama/efeitos adversos , Humanos , Reação a Corpo Estranho/patologia , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/imunologia , Feminino , Silicones/química , Géis de Silicone/efeitos adversos , Citocinas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia
3.
Ann Transl Med ; 11(11): 385, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37970601

RESUMO

Background and Objective: Implant-based breast surgery is a common procedure for both reconstructive and aesthetic purposes. Breast implants, like any foreign object, trigger the formation of a capsule around them. While generally harmless, the capsule can undergo fibrotic changes leading to capsular contracture, which can negatively impact surgical outcomes and patient well-being. Additionally, rare but serious complications, such as breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) and capsule-associated squamous cell carcinoma, have been reported. This paper aims to review the physiology of capsular formation, identify factors contributing to capsule-related pathologies, and discuss their clinical implications. Methods: A review of relevant literature was conducted by searching databases for articles published between inception and September 2022. The search included but not limited to terms such as "capsular formation" and "capsular contracture". Selected articles were critically analyzed to address the objectives of this review. Key Content and Findings: Capsular formation involves interactions between the implant surface, surrounding tissues, and the immune system. Factors influencing pathological changes in the capsule include genetic predisposition, bacterial contamination, implant characteristics, and surgical techniques. Capsular contracture, characterized by tissue hardening, pain, and implant distortion, remains the most common complication. Rare but life-threatening conditions, such as BIA-ALCL and capsule-associated squamous cell carcinoma, necessitate vigilant monitoring and early detection. Conclusions: Understanding the physiology of capsular formation and its associated pathologies is crucial for healthcare providers involved in implant-based breast surgery. Efforts should focus on minimizing the risk of capsular contracture through improved implant materials, surgical techniques, and infection prevention. The emergence of BIA-ALCL and capsule-associated squamous cell carcinoma underscores the importance of long-term surveillance and prompt diagnosis. Further research is needed to uncover underlying mechanisms and develop preventive measures and treatments for these complications. Enhancing our knowledge and clinical management of capsular formation will lead to safer and more successful outcomes in implant-based breast surgery.

4.
Semin Plast Surg ; 35(3): 181-188, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34526866

RESUMO

Radiation therapy is a valuable tool in the treatment of numerous malignancies but, in certain cases, can also causes significant acute and chronic damage to noncancerous neighboring tissues. This review focuses on the pathophysiology of radiation-induced damage and the clinical implications it has for plastic surgeons across breast reconstruction, osteoradionecrosis, radiation-induced skin cancers, and wound healing. The current understanding of treatment modalities presented here include hyperbaric oxygen therapy, autologous fat grafting and stem cells, and pharmaceutical agents.

5.
Semin Plast Surg ; 35(3): 189-197, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34526867

RESUMO

Over 400,000 women in the United States alone will have breast implant surgery each year. Although capsular contracture represents the most common complication of breast implant surgery, surgeons continue to debate the precise etiology. General agreement exists concerning the inflammatory origin of capsular fibrosis, but the inciting events triggering the inflammatory cascade appear to be multifactorial, making it difficult to predict why one patient may develop capsular contracture while another will not. Accordingly, researchers have explored many different surgical, biomaterial, and medical therapies to address these multiple factors in an attempt to prevent and treat capsular contracture. In the current paper, we aim to inform the reader on the most up-to-date understanding of the pathophysiology, prevention, and treatment of capsular contracture.

6.
Q J Exp Psychol (Hove) ; 70(9): 1943-1963, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27442724

RESUMO

In the current study, cross-task interactions between number order and sound intensity judgments were assessed using a dual-task paradigm. Participants first categorized numerical sequences composed of Arabic digits as either ordered (ascending, descending) or non-ordered. Following each number sequence, participants then had to judge the intensity level of a target sound. Experiment 1 emphasized processing the two tasks independently (serial processing), while Experiments 2 and 3 emphasized processing the two tasks simultaneously (parallel processing). Cross-task interference occurred only when the task required parallel processing and was specific to ascending numerical sequences, which led to a higher proportion of louder sound intensity judgments. In Experiment 4 we examined whether this unidirectional interaction was the result of participants misattributing enhanced processing fluency experienced on ascending sequences as indicating a louder target sound. The unidirectional finding could not be entirely attributed to misattributed processing fluency, and may also be connected to experientially derived conceptual associations between ascending number sequences and greater magnitude, consistent with conceptual mapping theory.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Cognição/fisiologia , Julgamento/fisiologia , Matemática , Adolescente , Análise de Variância , Feminino , Humanos , Imaginação , Masculino , Psicoacústica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...