Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465106, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38917678

RESUMO

Detecting and quantifying amino acids is vital in biochemical analyses, especially for diagnosing metabolic disorders. L-proline, among these amino acids, holds significant relevance for various metabolic disorders in living organisms, particularly in humans. hyperprolinemia arises when ineffective breakdown of L-proline occurs due to enzyme deficiencies, leading to its accumulation in the body and underscoring the need for precise monitoring. To address this challenge, molecular imprinting offers a reliable single-step technique for detecting target molecules like proteins, peptides, amino acids, or ions with high selectivity. Moreover, nanoparticles, with significant surface area-to-volume ratios, enable high-level mass transfer and binding kinetics, making them ideal for nano-scale sensitive applications. In this study, 2-hydroxyethyl methacrylate-based molecularly imprinted nanoparticles were synthesized via mini-emulsion polymerization, combining the advantages of molecular imprinting technique and nanoparticles for the specific recognition of L-proline, and were well-characterized by Scanning Electron Microscopy, zeta-sizer particle size analysis, and Fourier Transform Infrared Spectroscopy. Based on zeta-sizer analysis, the estimated diameters of L-proline-imprinted and non-imprinted nanoparticles (Pro-MIPs and NIPs) were determined to be approximately 27.51 nm and 20.66 nm, respectively. The adsorption of L-proline onto nanoparticles from aqueous solutions was investigated in a batch system, and the maximum L-proline adsorption capacity was determined to be 26.58 mg/g for Pro-MIPs and 4.65 mg/g for and NIPs. The selectivity of Pro-MIPs was assessed using Liquid Chromatography-Tandem Mass Spectrometry, even in human serum and in the presence of competing molecules (L-histidine and L-phenylalanine). Additionally, Pro-MIPs maintained their adsorption capacity through up to 10 adsorption-desorption cycles without significant decrease.

2.
Biotechnol Prog ; 37(1): e3089, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016620

RESUMO

Ergosterol is a key biochemical marker for fungal mycelial growth. In this study, molecularly ergosterol imprinted particles (Erg-MIPs) were newly synthesized for the selective detection of ergosterol in mold samples. Erg-MIPs were characterized via scanning electron microscopy, swelling studies, and surface area measurements. Maximum selective ergosterol adsorption achieved as 28.50 mg/g Erg-MIP. Selectivity studies showed that Erg-MIPs adsorbed Erg 2.01 and 3.27 times higher than that of cholesterol and stigmasterol, respectively. Erg adsorption from Aspergillus niger was found as 23.87 mg/g. Reusability of Erg-MIPs was studied and decrease in Erg adsorption capacity of the particles was negligible (3%). Erg-MIPs are good affinity materials for the selective Erg detection from food samples, prior to use in food industry.


Assuntos
Aspergillus niger/metabolismo , Ergosterol/metabolismo , Impressão Molecular/instrumentação , Impressão Molecular/métodos , Polímeros/química , Extração em Fase Sólida/métodos , Adsorção , Aspergillus niger/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...