Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854126

RESUMO

The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center. Previous studies suggested that the Saccharomyces cerevisiae ABCF ATPase New1 is involved in translation termination and/or ribosome recycling, however, the exact function remained unclear. Here, we have applied 5PSeq, single-particle cryo-EM and readthrough reporter assays to provide insight into the biological function of New1. We show that the lack of New1 results in ribosomal stalling at stop codons preceded by a lysine or arginine codon and that the stalling is not defined by the nature of the C-terminal amino acid but rather by the identity of the tRNA isoacceptor in the P-site. Collectively, our results suggest that translation termination is inefficient when ribosomes have specific tRNA isoacceptors in the P-site and that the recruitment of New1 rescues ribosomes at these problematic termination contexts.

2.
Front Genet ; 14: 1264656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680201

RESUMO

Most high throughput genomic data analysis pipelines currently rely on over-representation or gene set enrichment analysis (ORA/GSEA) approaches for functional analysis. In contrast, topology-based pathway analysis methods, which offer a more biologically informed perspective by incorporating interaction and topology information, have remained underutilized and inaccessible due to various limiting factors. These methods heavily rely on the quality of pathway topologies and often utilize predefined topologies from databases without assessing their correctness. To address these issues and make topology-aware pathway analysis more accessible and flexible, we introduce the PSF (Pathway Signal Flow) toolkit R package. Our toolkit integrates pathway curation and topology-based analysis, providing interactive and command-line tools that facilitate pathway importation, correction, and modification from diverse sources. This enables users to perform topology-based pathway signal flow analysis in both interactive and command-line modes. To showcase the toolkit's usability, we curated 36 KEGG signaling pathways and conducted several use-case studies, comparing our method with ORA and the topology-based signaling pathway impact analysis (SPIA) method. The results demonstrate that the algorithm can effectively identify ORA enriched pathways while providing more detailed branch-level information. Moreover, in contrast to the SPIA method, it offers the advantage of being cut-off free and less susceptible to the variability caused by selection thresholds. By combining pathway curation and topology-based analysis, the PSF toolkit enhances the quality, flexibility, and accessibility of topology-aware pathway analysis. Researchers can now easily import pathways from various sources, correct and modify them as needed, and perform detailed topology-based pathway signal flow analysis. In summary, our PSF toolkit offers an integrated solution that addresses the limitations of current topology-based pathway analysis methods. By providing interactive and command-line tools for pathway curation and topology-based analysis, we empower researchers to conduct comprehensive pathway analyses across a wide range of applications.

3.
Cancers (Basel) ; 15(15)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568651

RESUMO

The molecular mechanisms of the liver metastasis of colorectal cancer (CRLM) remain poorly understood. Here, we applied machine learning and bioinformatics trajectory inference to analyze a gene expression dataset of CRLM. We studied the co-regulation patterns at the gene level, the potential paths of tumor development, their functional context, and their prognostic relevance. Our analysis confirmed the subtyping of five liver metastasis subtypes (LMS). We provide gene-marker signatures for each LMS, and a comprehensive functional characterization that considers both the hallmarks of cancer and the tumor microenvironment. The ordering of CRLMs along a pseudotime-tree revealed a continuous shift in expression programs, suggesting a developmental relationship between the subtypes. Notably, trajectory inference and personalized analysis discovered a range of epigenetic states that shape and guide metastasis progression. By constructing prognostic maps that divided the expression landscape into regions associated with favorable and unfavorable prognoses, we derived a prognostic expression score. This was associated with critical processes such as epithelial-mesenchymal transition, treatment resistance, and immune evasion. These factors were associated with responses to neoadjuvant treatment and the formation of an immuno-suppressive, mesenchymal state. Our machine learning-based molecular profiling provides an in-depth characterization of CRLM heterogeneity with possible implications for treatment and personalized diagnostics.

4.
Nat Microbiol ; 8(6): 1123-1136, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217719

RESUMO

Regulation of messenger RNA stability is pivotal for programmed gene expression in bacteria and is achieved by a myriad of molecular mechanisms. By bulk sequencing of 5' monophosphorylated mRNA decay intermediates (5'P), we show that cotranslational mRNA degradation is conserved among both Gram-positive and -negative bacteria. We demonstrate that, in species with 5'-3' exonucleases, the exoribonuclease RNase J tracks the trailing ribosome to produce an in vivo single-nucleotide toeprint of the 5' position of the ribosome. In other species lacking 5'-3' exonucleases, ribosome positioning alters endonucleolytic cleavage sites. Using our metadegradome (5'P degradome) sequencing approach, we characterize 5'P mRNA decay intermediates in 96 species including Bacillus subtilis, Escherichia coli, Synechocystis spp. and Prevotella copri and identify codon- and gene-level ribosome stalling responses to stress and drug treatment. We also apply 5'P sequencing to complex clinical and environmental microbiomes and demonstrate that metadegradome sequencing provides fast, species-specific posttranscriptional characterization of responses to drug or environmental perturbations. Finally we produce a degradome atlas for 96 species to enable analysis of mechanisms of RNA degradation in bacteria. Our work paves the way for the application of metadegradome sequencing to investigation of posttranscriptional regulation in unculturable species and complex microbial communities.


Assuntos
Biossíntese de Proteínas , RNA Bacteriano , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Endorribonucleases/genética , Bactérias/genética , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/genética , Exonucleases/metabolismo
5.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632815

RESUMO

The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Armênia/epidemiologia , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , SARS-CoV-2/genética
6.
Nat Commun ; 13(1): 1860, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387982

RESUMO

PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Šout of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.


Assuntos
Oxazolidinonas , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Linezolida/farmacologia , Oxazolidinonas/farmacologia , RNA de Transferência/genética
7.
Front Genet ; 12: 662464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897770

RESUMO

Telomere maintenance is one of the mechanisms ensuring indefinite divisions of cancer and stem cells. Good understanding of telomere maintenance mechanisms (TMM) is important for studying cancers and designing therapies. However, molecular factors triggering selective activation of either the telomerase dependent (TEL) or the alternative lengthening of telomeres (ALT) pathway are poorly understood. In addition, more accurate and easy-to-use methodologies are required for TMM phenotyping. In this study, we have performed literature based reconstruction of signaling pathways for the ALT and TEL TMMs. Gene expression data were used for computational assessment of TMM pathway activities and compared with experimental assays for TEL and ALT. Explicit consideration of pathway topology makes bioinformatics analysis more informative compared to computational methods based on simple summary measures of gene expression. Application to healthy human tissues showed high ALT and TEL pathway activities in testis, and identified genes and pathways that may trigger TMM activation. Our approach offers a novel option for systematic investigation of TMM activation patterns across cancers and healthy tissues for dissecting pathway-based molecular markers with diagnostic impact.

8.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525353

RESUMO

Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação , Neoplasias Ovarianas/genética , Transcriptoma , Adulto , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Análise de Sobrevida , Resultado do Tratamento
9.
NAR Genom Bioinform ; 2(4): lqaa099, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33575643

RESUMO

In eukaryotes, 5'-3' co-translation degradation machinery follows the last translating ribosome providing an in vivo footprint of its position. Thus, 5' monophosphorylated (5'P) degradome sequencing, in addition to informing about RNA decay, also provides information regarding ribosome dynamics. Multiple experimental methods have been developed to investigate the mRNA degradome; however, computational tools for their reproducible analysis are lacking. Here, we present fivepseq: an easy-to-use application for analysis and interactive visualization of 5'P degradome data. This tool performs both metagene- and gene-specific analysis, and enables easy investigation of codon-specific ribosome pauses. To demonstrate its ability to provide new biological information, we investigate gene-specific ribosome pauses in Saccharomyces cerevisiae after eIF5A depletion. In addition to identifying pauses at expected codon motifs, we identify multiple genes with strain-specific degradation frameshifts. To show its wide applicability, we investigate 5'P degradome from Arabidopsis thaliana and discover both motif-specific ribosome protection associated with particular developmental stages and generally increased ribosome protection at termination level associated with age. Our work shows how the use of improved analysis tools for the study of 5'P degradome can significantly increase the biological information that can be derived from such datasets and facilitate its reproducible analysis.

10.
Sci Rep ; 9(1): 18758, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822713

RESUMO

Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother's, and, to a lesser extent, with father's TL having the strongest influence on the offspring. In this cohort, mother's, but not father's age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait.


Assuntos
Herança Materna , Modelos Genéticos , Ribonucleosídeo Difosfato Redutase/genética , Homeostase do Telômero/genética , Telômero/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Conjuntos de Dados como Assunto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Masculino , Idade Materna , Pessoa de Meia-Idade , Países Baixos , Idade Paterna , Polimorfismo de Nucleotídeo Único , Ribonucleosídeo Difosfato Redutase/metabolismo , Fatores Sexuais , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Pharmaceutics ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842375

RESUMO

Drug repositioning can save considerable time and resources and significantly speed up the drug development process. The increasing availability of drug action and disease-associated transcriptome data makes it an attractive source for repositioning studies. Here, we have developed a transcriptome-guided approach for drug/biologics repositioning based on multi-layer self-organizing maps (ml-SOM). It allows for analyzing multiple transcriptome datasets by segmenting them into layers of drug action- and disease-associated transcriptome data. A comparison of expression changes in clusters of functionally related genes across the layers identifies "drug target" spots in disease layers and evaluates the repositioning possibility of a drug. The repositioning potential for two approved biologics drugs (infliximab and brodalumab) confirmed the drugs' action for approved diseases (ulcerative colitis and Crohn's disease for infliximab and psoriasis for brodalumab). We showed the potential efficacy of infliximab for the treatment of sarcoidosis, but not chronic obstructive pulmonary disease (COPD). Brodalumab failed to affect dysregulated functional gene clusters in Crohn's disease (CD) and systemic juvenile idiopathic arthritis (SJIA), clearly indicating that it may not be effective in the treatment of these diseases. In conclusion, ml-SOM offers a novel approach for transcriptome-guided drug repositioning that could be particularly useful for biologics drugs.

12.
Front Oncol ; 9: 1172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750255

RESUMO

Background: Activation of telomere maintenance mechanisms (TMMs) is a hallmark of most cancers, and is required to prevent genome instability and to establish cellular immortality through reconstitution of capping of chromosome ends. TMM depends on the cancer type. Comparative studies linking tumor biology and TMM have potential impact for evaluating cancer onset and development. Methods: We have studied alterations of telomere length, their sequence composition and transcriptional regulation in mismatch repair deficient colorectal cancers arising in Lynch syndrome (LS-CRC) and microsatellite instable (MSI) sporadic CRC (MSI s-CRC), and for comparison, in microsatellite stable (MSS) s-CRC and in benign colon mucosa. Our study applied bioinformatics analysis of whole genome DNA and RNA sequencing data and a pathway model to study telomere length alterations and the potential effect of the "classical" telomerase (TEL-) and alternative (ALT-) TMM using transcriptomic signatures. Results: We have found progressive decrease of mean telomere length in all cancer subtypes compared with reference systems. Our results support the view that telomere attrition is an early event in tumorigenesis. TMM gets activated in all tumors studied due to concerted overexpression of a large fraction of genes with direct relation to telomere function, where only a very small fraction of them showed recurrent mutations. TEL-related transcriptional state was dominating in all CRC subtypes, showing, however, subtype-specific activation patterns; while contribution of the ALT-TMM was slightly more prominent in the hypermutated MSI s-CRC and LS-CRC. TEL-TMM is mainly activated by over-expression of DKC1 and/or TERT genes and their interaction partners, where DKC1 is more prominent in MSS than in MSI s-CRC and can serve as a transcriptomic marker of TMM activity. Conclusions: Our results suggest that transcriptional patterns are indicative for TMM pathway activation with subtle differences between TEL and ALT mechanisms in a CRC subtype-specific fashion. Sequencing data potentially provide a suited measure to study alterations of telomere length and of underlying transcriptional regulation. Further studies are needed to improve this method.

13.
Front Immunol ; 9: 1620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065722

RESUMO

We analyzed the blood transcriptome of sepsis framed within community-acquired pneumonia (CAP) and characterized its molecular and cellular heterogeneity in terms of functional modules of co-regulated genes with impact for the underlying pathophysiological mechanisms. Our results showed that CAP severity is associated with immune suppression owing to T-cell exhaustion and HLA and chemokine receptor deactivation, endotoxin tolerance, macrophage polarization, and metabolic conversion from oxidative phosphorylation to glycolysis. We also found footprints of host's response to viruses and bacteria, altered levels of mRNA from erythrocytes and platelets indicating coagulopathy that parallel severity of sepsis and survival. Finally, our data demonstrated chromatin re-modeling associated with extensive transcriptional deregulation of chromatin modifying enzymes, which suggests the extensive changes of DNA methylation with potential impact for marker selection and functional characterization. Based on the molecular footprints identified, we propose a novel stratification of CAP cases into six groups differing in the transcriptomic scores of CAP severity, interferon response, and erythrocyte mRNA expression with impact for prognosis. Our analysis increases the resolution of transcriptomic footprints of CAP and reveals opportunities for selecting sets of transcriptomic markers with impact for translation of omics research in terms of patient stratification schemes and sets of signature genes.

14.
Front Genet ; 9: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515623

RESUMO

Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as "tumor brain." Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon.

15.
PLoS One ; 12(11): e0187572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099860

RESUMO

INTRODUCTION: Autoinflammatory and autoimmune disorders are characterized by aberrant changes in innate and adaptive immunity that may lead from an initial inflammatory state to an organ specific damage. These disorders possess heterogeneity in terms of affected organs and clinical phenotypes. However, despite the differences in etiology and phenotypic variations, they share genetic associations, treatment responses and clinical manifestations. The mechanisms involved in their initiation and development remain poorly understood, however the existence of some clear similarities between autoimmune and autoinflammatory disorders indicates variable degrees of interaction between immune-related mechanisms. METHODS: Our study aims at contributing to a holistic, pathway-centered view on the inflammatory condition of autoimmune and autoinflammatory diseases. We have evaluated similarities and specificities of pathway activity changes in twelve autoimmune and autoinflammatory disorders by performing meta-analysis of publicly available gene expression datasets generated from peripheral blood mononuclear cells, using a bioinformatics pipeline that integrates Self Organizing Maps and Pathway Signal Flow algorithms along with KEGG pathway topologies. RESULTS AND CONCLUSIONS: The results reveal that clinically divergent disease groups share common pathway perturbation profiles. We identified pathways, similarly perturbed in all the studied diseases, such as PI3K-Akt, Toll-like receptor, and NF-kappa B signaling, that serve as integrators of signals guiding immune cell polarization, migration, growth, survival and differentiation. Further, two clusters of diseases were identified based on specifically dysregulated pathways: one gathering mostly autoimmune and the other mainly autoinflammatory diseases. Cluster separation was driven not only by apparent involvement of pathways implicated in adaptive immunity in one case, and inflammation in the other, but also by processes not explicitly related to immune response, but rather representing various events related to the formation of specific pathophysiological environment. Thus, our data suggest that while all of the studied diseases are affected by activation of common inflammatory processes, disease-specific variations in their relative balance are also identified.


Assuntos
Autoimunidade/imunologia , Inflamação/imunologia , Biologia de Sistemas , Humanos
16.
J Pathol ; 243(2): 242-254, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28727142

RESUMO

Colorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole-genome and transcriptome studies of LS-CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS-CRC and sporadic CRC, about the molecular heterogeneity of LS-CRC, and about specific mechanisms of LS-CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour-distant reference colonic mucosa based on whole-genome DNA-sequencing and RNA-sequencing analyses. Our data support two subgroups of LS-CRCs, G1 and G2, whereby G1 tumours show a higher number of somatic mutations, a higher amount of microsatellite slippage, and a different mutation spectrum. The gene expression phenotypes support this difference. Reference mucosa of G1 shows a strong immune response associated with the expression of HLA and immune checkpoint genes and the invasion of CD4+ T cells. Such an immune response is not observed in LS tumours, G2 reference and normal (non-Lynch) mucosa, and sporadic CRC. We hypothesize that G1 tumours are edited for escape from a highly immunogenic microenvironment via loss of HLA presentation and T-cell exhaustion. In contrast, G2 tumours seem to develop in a less immunogenic microenvironment where tumour-promoting inflammation parallels tumourigenesis. Larger studies on non-neoplastic mucosa tissue of mutation carriers are required to better understand the early phases of emerging tumours. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Colorretais/genética , Mutação/genética , Antígenos de Neoplasias/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Expressão Gênica/genética , Genes Neoplásicos/genética , Genoma Humano/genética , Humanos , Imunidade Celular , Fenótipo , Recidiva , Transcriptoma/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia
17.
Gene Regul Syst Bio ; 10: 35-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27346946

RESUMO

Telomere length dynamics plays a crucial role in regulation of cellular processes and cell fate. In contrast to epidemiological studies revealing the association of telomere length with age, age-related diseases, and cancers, the role of telomeres in regulation of transcriptome and epigenome and the role of genomic variations in telomere lengthening are not extensively analyzed. This is explained by the fact that experimental assays for telomere length measurement are resource consuming, and there are very few studies where high-throughput genomics, transcriptomics, and/or epigenomics experiments have been coupled with telomere length measurements. Recent development of computational approaches for assessment of telomere length from whole genome sequencing data pave a new perspective on integration of telomeres into high-throughput systems biology analysis framework. Herein, we review existing methodologies for telomere length measurement and compare them to computational approaches, as well as discuss their applications in large-scale studies on telomere length dynamics.

18.
Front Genet ; 7: 79, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200087

RESUMO

Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent.

19.
Bioinformatics ; 32(11): 1697-700, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803156

RESUMO

MOTIVATION: Mean telomere length (MTL) is associated with cancers and age-related diseases, which necessitates identification of genomic and environmental factors that impact telomere length dynamics. Here, we present a pilot genome wide association (GWA) study for MTL in South Asian population using publicly available next generation whole genome sequences (WGS), both for MTL and genotype calculations. RESULTS: MTL in the studied population was not correlated with age, which is in accordance with previous reports. Further, we identified that individuals with Sikh religion had longer telomeres, which may be the result of complex interaction between genetic background and environmental factors. Finally, we identified 51 MTL-associated SNPs residing in five loci. The top ones were located in ADARB2 gene, which has previously been implicated with extreme old age. CONCLUSION: Our results show that WGS data can be used in telomere length studies. In addition, we introduce novel loci implicated in MTL that may be worth considering in further telomere studies. CONTACT: aarakelyan@sci.am SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Humano , Telômero , Povo Asiático , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
20.
Genes (Basel) ; 6(4): 1076-112, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26506391

RESUMO

We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt's lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...