Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0272342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36191008

RESUMO

Shear-induced platelet activation (SIPAct) is an important mechanism of thrombosis initiation under high blood flow. This mechanism relies on the interaction of platelets with the von Willebrand factor (VWF) capable of unfolding under high shear stress. High shear stress occurs in the arteriovenous fistula (AVF) commonly used for haemodialysis. A novel patient-specific approach for the modelling of SIPAct in the AVF was proposed. This enabled us to estimate the SIPAct level via computational fluid dynamics. The suggested approach was applied for the SIPAct analysis in AVF geometries reconstructed from medical images. The approach facilitates the determination of the SIPAct level dependence on both biomechanical (AVF flow rate) and biochemical factors (VWF multimer size). It was found that the dependence of the SIPAct level on the AVF flow rate can be approximated by a power law. The critical flow rate was a decreasing function of the VWF multimer size. Moreover, the critical AVF flow rate highly depended on patient-specific factors, e.g., the vessel geometry. This indicates that the approach may be adopted to elucidate patient-specific thrombosis risk factors in haemodialysis patients.


Assuntos
Fístula Arteriovenosa , Trombose , Plaquetas , Humanos , Ativação Plaquetária , Diálise Renal/efeitos adversos , Estresse Mecânico , Trombose/etiologia , Fator de von Willebrand
2.
IEEE Trans Biomed Circuits Syst ; 15(3): 629-641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34232890

RESUMO

Recently, an electrical stimulation of the paralyzed muscle, as a potential therapy for restoring function of a denervated muscle system, has been debated as an innovative treatment in the management of patients with laryngeal paralysis. Numerous studies in acute and chronic animal models have demonstrated that electrical stimulation of the paralyzed posterior cricoarytenoideus muscle (PCA) offers an approach to induce vocal fold abduction and restore ventilation through the glottis. The study aims to test applicability of the controlled opening of the rima glottides via direct electrical stimulation of the posterior cricoarytenoideus muscle. We developed for this purpose a novel instrument system for the controlled larynx nerve stimulation. An acute experiment on the 4 years old pig showed effectiveness of the engineered stimulator. The controlled opening of rima glottidis of both posterior cricoarytenoid muscles and afterwards of both PCA muscle contraction were observed as a result of the electrical stimulation with the applied current in the range of 0.1-3 mA and pulse width of 1 ms and 10 ms. Performed research indicates a large potential of the novel nerve stimulator for the human larynx stimulation.


Assuntos
Terapia por Estimulação Elétrica , Paralisia das Pregas Vocais , Animais , Estimulação Elétrica , Eletromiografia , Humanos , Músculos Laríngeos , Contração Muscular , Suínos , Paralisia das Pregas Vocais/terapia
3.
Artif Organs ; 42(4): 432-443, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508416

RESUMO

In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R2 = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m2 and weight greater than 12 kg.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Criança , Insuficiência Cardíaca/cirurgia , Hemólise , Humanos , Hidrodinâmica , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...