Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119122

RESUMO

The expansion of renewable energy and the growing number of electric vehicles and mobile devices are demanding improved and low-cost electrochemical energy storage. In order to meet the future needs for energy storage, novel material systems with high energy densities, readily available raw materials, and safety are required. Currently, lithium and lead mainly dominate the battery market, but apart from cobalt and phosphorous, lithium may show substantial supply challenges prospectively, as well. Therefore, the search for new chemistries will become increasingly important in the future, to diversify battery technologies. But which materials seem promising? Using a selection algorithm for the evaluation of suitable materials, the concept of a rechargeable, high-valent all-solid-state aluminum-ion battery appears promising, in which metallic aluminum is used as the negative electrode. On the one hand, this offers the advantage of a volumetric capacity four times higher (theoretically) compared to lithium analog. On the other hand, aluminum is the most abundant metal in the earth's crust. There is a mature industry and recycling infrastructure, making aluminum very cost efficient. This would make the aluminum-ion battery an important contribution to the energy transition process, which has already started globally. So far, it has not been possible to exploit this technological potential, as suitable positive electrodes and electrolyte materials are still lacking. The discovery of inorganic materials with high aluminum-ion mobility-usable as solid electrolytes or intercalation electrodes-is an innovative and required leap forward in the field of rechargeable high-valent ion batteries. In this review article, the constraints for a sustainable and seminal battery chemistry are described, and we present an assessment of the chemical elements in terms of negative electrodes, comprehensively motivate utilizing aluminum, categorize the aluminum battery field, critically review the existing positive electrodes and solid electrolytes, present a promising path for the accelerated development of novel materials and address problems of scientific communication in this field.

2.
Chemistry ; 25(36): 8623-8629, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31012511

RESUMO

We have created a set of crystalline model structures exhibiting straight lines of Al3+ connected to chalcogenides (O2- , S2- , and Se2- ) connected to metal cations of varying valence (Sr2+ , Y3+ , Zr4+ , Nb5+ , and Mo6+ ). They were relaxed with density functional theory computations and analysed by Bader partitioning. As Al3+ ions are supposed to strongly interact with their atomic environment, we studied the electron density topology induced by higher-valent cations in the extended chemical neighbourhood of Al. In fact, we found a general decrease of ionic charges and an increasing displacement of the chalcogenides towards higher-valent ions for the heavier chalcogens. Therefore, we comprehensively screened S- and Se-containing compounds for candidates theoretically exhibiting low migration barriers for Al3+ ions by using Voronoi-Dirichlet partitioning and bond valence site energy calculations. The basis for this search is the Inorganic Crystal Structure Database. Indeed, we could extract six promising candidates with low Al3+ migration barriers. which are even lower than the barriers for any other element inside of these materials. This will encourage efforts towards preparing suitable Al3+ conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...