Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930247

RESUMO

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Luteinizante , Fragmentos de Peptídeos , Substância P/análogos & derivados , Feminino , Animais , Ovinos , Hormônio Luteinizante/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Saporinas/farmacologia , Progesterona/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Kisspeptinas/metabolismo
2.
Peptides ; 164: 171005, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990389

RESUMO

This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Ruminantes/metabolismo , Kisspeptinas/metabolismo
3.
J Neuroendocrinol ; 34(6): e13135, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579068

RESUMO

Undernutrition limits reproduction through inhibition of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) secretion. Because KNDy neurons coexpress neuropeptides that play stimulatory (kisspeptin and neurokinin B [NKB]) and inhibitory (dynorphin) roles in pulsatile GnRH/LH release, we hypothesized that undernutrition would inhibit kisspeptin and NKB expression at the same time as increasing dynorphin expression. Fifteen ovariectomized lambs were either fed to maintain pre-study body weight (controls) or feed-restricted to lose 20% of pre-study body weight (FR) over 13 weeks. Blood samples were collected and plasma from weeks 0 and 13 were assessed for LH by radioimmunoassay. At week 13, animals were killed, and brain tissue was processed for assessment of KNDy peptide mRNA or protein expression. Mean LH and LH pulse amplitude were lower in FR lambs compared to controls. We observed lower mRNA abundance for kisspeptin within KNDy neurons of FR lambs compared to controls with no significant change in mRNA for NKB or dynorphin. We also observed that FR lambs had fewer numbers of arcuate nucleus kisspeptin and NKB perikarya compared to controls. These findings support the idea that KNDy neurons are important for regulating reproduction during undernutrition in female sheep.


Assuntos
Desnutrição , Neurocinina B , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Dinorfinas/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Desnutrição/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ovinos
4.
Biology (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34681086

RESUMO

The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty. We collected blood and hypothalamic tissue from ovariectomized lambs implanted with estradiol at five, six, seven, eight (puberty), and ten months of age. Mean LH values and LH pulse frequency were the lowest at five to seven months, intermediate at eight months, and highest at ten months. Kisspeptin and NKB immunopositive cell numbers did not change with age. Numbers of cells expressing mRNA for kisspeptin, NKB, or dynorphin were similar at five, eight, and ten months of age. Age did not affect mRNA expression per cell for kisspeptin or NKB, but dynorphin mRNA expression per cell was elevated at ten months versus five months. Thus, neither KNDy protein nor mRNA expression changed in a predictable manner during pubertal development. These data raise the possibility that KNDy neurons, while critical, may await other inputs for the initiation of puberty.

5.
Biol Reprod ; 105(6): 1533-1544, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34643223

RESUMO

Puberty onset is a complex physiological process, which enables the capacity for reproduction through increased gonadotropin-releasing hormone and subsequently luteinizing hormone secretion. While cells that coexpress kisspeptin, neurokinin B (NKB), and dynorphin in the hypothalamic arcuate nucleus are believed to govern the timing of puberty, the degree to which kisspeptin/NKB/dynorphin (KNDy) neurons exist and are regulated by pubertal status remains to be determined in the gilt. Hypothalamic tissue from prepubertal and postpubertal, early follicular phase gilts was used to determine the expression of kisspeptin, NKB, and dynorphin within the arcuate nucleus. Fluorescent in situ hybridization revealed that the majority (>74%) of arcuate nucleus neurons that express mRNA for kisspeptin coexpressed mRNA for NKB and dynorphin. There were fewer arcuate nucleus cells that expressed mRNA for dynorphin in postpubertal gilts compared to prepubertal gilts (P < 0.05), but the number of arcuate nucleus cells expressing mRNA for kisspeptin or NKB was not different between groups. Within KNDy neurons, mRNA abundance for kisspeptin, NKB, and dynorphin of postpubertal gilts was the same as, less than, and greater than, respectively, prepubertal gilts. Immunostaining for kisspeptin did not differ between prepubertal and postpubertal gilts, but there were fewer NKB immunoreactive fibers in postpubertal gilts compared to prepubertal gilts (P < 0.05). Together, these data reveal novel information about KNDy neurons in gilts and support the idea that NKB and dynorphin play a role in puberty onset in the female pig.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/fisiologia , Maturidade Sexual , Sus scrofa/fisiologia , Animais , Feminino
6.
Metabolites ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652696

RESUMO

Agouti-related peptide (AgRP) neurons, which relay information from peripheral metabolic signals, may constitute a key central regulator of reproduction. Given that AgRP inhibits luteinizing hormone (LH) secretion and that nutritional suppression of LH elicits an increase in AgRP while suppressing kisspeptin expression in the arcuate nucleus (ARC) of the hypothalamus, we sought to examine the degree to which AgRP could directly regulate ARC kisspeptin neurons. Hypothalamic tissue was collected from four castrated male sheep (10 months of age) and processed for the detection of protein (AgRP input to kisspeptin neurons) using immunohistochemistry and mRNA for melanocortin 3 and 4 receptors (MC3R; MC4R) in kisspeptin neurons using RNAscope. Immunohistochemical analysis revealed that the majority of ARC kisspeptin neurons are contacted by presumptive AgRP terminals. RNAscope analysis revealed that nearly two thirds of the ARC kisspeptin neurons express mRNA for MC3R, while a small percentage (<10%) colocalize MC4R. Taken together, this data provides neuroanatomical evidence for a direct link between orexigenic AgRP neurons and reproductively critical kisspeptin neurons in the sheep, and builds upon our current understanding of the central link between energy balance and reproduction.

7.
Reprod Fertil ; 1(1): 1-13, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128420

RESUMO

Undernutrition impairs reproductive success through suppression of gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. Given that kisspeptin and neurokinin B (NKB) neurons in the arcuate nucleus (ARC) of the hypothalamus are thought to play key stimulatory roles in the generation of GnRH/LH pulses, we hypothesized that feed restriction would reduce the ARC mRNA abundance and protein expression of kisspeptin and NKB in young, male sheep. Fourteen wethers (castrated male sheep five months of age) were either fed to maintain (FM; n = 6) pre-study body weight or feed-restricted (FR; n = 8) to lose 20% of pre-study body weight over 13 weeks. Throughout the study, weekly blood samples were collected and assessed for LH concentration using RIA. At Week 13 of the experiment, animals were killed, heads were perfused with 4% paraformaldehyde, and brain tissue containing the hypothalamus was collected, sectioned, and processed for detection of mRNA (RNAscope) and protein (immunohistochemistry) for kisspeptin and NKB. Mean LH was significantly lower and LH inter-pulse interval was significantly higher in FR wethers compared to FM wethers at the end of the experiment (Week 13). RNAscope analysis revealed significantly fewer cells expressing mRNA for kisspeptin and NKB in FR wethers compared to FM controls, and immunohistochemical analysis revealed significantly fewer immunopositive kisspeptin and NKB cells in FR wethers compared to FM wethers. Taken together, this data supports the idea that long-term feed restriction regulates GnRH/LH secretion through central suppression of kisspeptin and NKB in male sheep. LAY SUMMARY: While undernutrition is known to impair reproduction at the level of the brain, the components responsible for this in the brain remain to be fully understood. Using male sheep we examined the effect of undernutrition on two stimulatory molecules in the brain critical for reproduction: kisspeptin and neurokinin B. Feed restriction for several weeks resulted in decreased luteinizing hormone in the blood indicating reproductive function was suppressed. In addition, undernutrition also reduced both kisspeptin and neurokinin B levels within a region of the brain involved in reproduction, the hypothalamus. Given that they have stimulatory roles in reproduction, we believe that undernutrition acts in the brain to reduce kisspeptin and neurokinin B levels leading to the reduction in luteinizing hormone secretion. In summary, long-term undernutrition inhibits reproductive function in sheep through suppression of kisspeptin and neurokinin B within the brain.


Assuntos
Desnutrição , Neurocinina B , Animais , Peso Corporal , Hormônio Liberador de Gonadotropina , Kisspeptinas , Hormônio Luteinizante , Masculino , RNA Mensageiro , Receptores da Neurocinina-3 , Ovinos
8.
Reproduction ; 156(3): R83-R99, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29880718

RESUMO

Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Homeostase/fisiologia , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Cruzamento , Dinorfinas/fisiologia , Estradiol/farmacologia , Ciclo Estral , Retroalimentação Fisiológica , Feminino , Kisspeptinas/fisiologia , Hormônio Luteinizante/metabolismo , Neurocinina B/fisiologia , Neurônios/fisiologia , Periodicidade , Progesterona/farmacologia , Estações do Ano , Maturidade Sexual/fisiologia
9.
Endocrinology ; 159(2): 647-664, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165691

RESUMO

Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17ß-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation.


Assuntos
Estradiol/farmacologia , Resistência à Insulina , Neurônios/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pró-Opiomelanocortina/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Feminino , Cobaias , Humanos , Insulina/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(9): 2413-2418, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196880

RESUMO

Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.


Assuntos
Proteína Relacionada com Agouti/genética , Fertilidade/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Inanição/genética , Proteína Relacionada com Agouti/deficiência , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Leptina/genética , Leptina/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Reprodução/efeitos dos fármacos , Reprodução/genética , Transdução de Sinais , Técnicas Estereotáxicas
11.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549338

RESUMO

Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1(ARH)) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1(ARH) neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1(ARH) neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1(ARH) neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1(ARH) neurons. We propose that Kiss1(ARH) neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurônios/efeitos dos fármacos , Potenciais de Ação , Animais , Fenômenos Eletrofisiológicos , Camundongos , Neurocinina B/metabolismo , Optogenética , Reação em Cadeia da Polimerase em Tempo Real
12.
Mol Endocrinol ; 30(6): 630-44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27093227

RESUMO

Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Glutamatos/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Optogenética , Pró-Opiomelanocortina/metabolismo , Esteroides/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/efeitos da radiação , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/efeitos da radiação , Axônios/metabolismo , Axônios/ultraestrutura , Castração , Channelrhodopsins/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Nat Neurosci ; 19(5): 734-741, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27019015

RESUMO

In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues.


Assuntos
Agressão/fisiologia , Proteína Relacionada com Agouti/fisiologia , Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Hipotálamo/fisiologia , Fragmentos de Peptídeos/fisiologia , Núcleos Septais/fisiologia , Inanição/fisiopatologia , Proteína Relacionada com Agouti/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Técnicas de Introdução de Genes , Hipotálamo/metabolismo , Masculino , Camundongos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Fragmentos de Peptídeos/metabolismo , Núcleos Septais/metabolismo
14.
Horm Mol Biol Clin Investig ; 17(3): 109-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25372735

RESUMO

The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17ß-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo.


Assuntos
Metabolismo Energético , Estrogênios/metabolismo , Homeostase , Kisspeptinas/metabolismo , Leptina/metabolismo , Reprodução , Animais , Estradiol/metabolismo , Humanos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
15.
Mol Endocrinol ; 28(8): 1362-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24933249

RESUMO

The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein-coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Animais , Núcleo Arqueado do Hipotálamo/citologia , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
Cell Metab ; 19(4): 682-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703699

RESUMO

Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin and insulin receptors are coupled to the activation of phosphatidylinositide 3 kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that, similar to leptin, purified insulin depolarized POMC and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn(2+), which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally, as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Insulina/farmacologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Cobaias , Canais KATP/efeitos dos fármacos , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zinco/farmacologia
17.
Endocrinology ; 154(11): 4249-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928375

RESUMO

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


Assuntos
Retroalimentação Fisiológica , Peptídeos Opioides/metabolismo , Progesterona/metabolismo , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/administração & dosagem , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estro , Feminino , Hipotálamo/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Peptídeos Opioides/administração & dosagem , Peptídeos Opioides/genética , Peptídeos Opioides/farmacologia , Ovariectomia , Progesterona/administração & dosagem , Progesterona/farmacologia , Transporte Proteico , Receptores de Progesterona/metabolismo , Nociceptina
18.
Endocrinology ; 154(11): 4259-69, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959940

RESUMO

Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Dinorfinas/genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , N-Metilaspartato/genética , N-Metilaspartato/metabolismo , Neurocinina B/genética , Neurônios/classificação , Neurônios/metabolismo , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo
19.
Endocrinology ; 153(12): 5918-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23038740

RESUMO

Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons.


Assuntos
Dopamina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Anestro/efeitos dos fármacos , Animais , Feminino , Imuno-Histoquímica/métodos , Hormônio Luteinizante/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Estações do Ano , Ovinos
20.
Endocrinology ; 153(6): 2756-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22434087

RESUMO

Puberty onset in female sheep is marked by a decrease in estradiol-negative feedback, allowing for the increase in GnRH and LH pulses that heralds the first ovulation. Based on recent genetic studies in humans, two possible neuropeptides that could promote puberty onset are kisspeptin and neurokinin B (NKB). Our first experiment determined whether the NKB agonist, senktide, could stimulate LH secretion in prepubertal ewes. A second study used prepubertal and postpubertal ewes that were intact or ovariectomized (OVX) to test the hypothesis that expression of kisspeptin and NKB in the arcuate nucleus increased postpubertally. For comparison, kisspeptin and NKB expression in age-matched intact, and castrated males were also examined. In experiment 1, the percentage of ewes showing an LH pulse immediately after injection of senktide (100 µg, 60%; 500 µg, 100%) was greater than that for water-injected controls (experiment 1a, 25%; experiment 1b, 20%). In experiment 2, kisspeptin-positive cell numbers in the arcuate nucleus increased after puberty in intact females and were increased by OVX in prepubertal but not postpubertal ewes. Changes in kisspeptin cell numbers were paralleled by changes in kisspeptin-close contacts onto GnRH neurons in the medial preoptic area. NKB cell numbers did not differ significantly between intact prepubertal and postpubertal ewes but increased with OVX in both age groups. NKB fiber immunoreactivity was greater in postpubertal than in prepubertal intact ewes. In age-matched males, kisspeptin and NKB cell numbers increased with castration, but decreased with age. These results support the hypothesis that kisspeptin is a gatekeeper to female ovine puberty and raise the possibility that NKB may also play a role, albeit through different means.


Assuntos
Kisspeptinas/fisiologia , Neurocinina B/fisiologia , Maturidade Sexual/fisiologia , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/metabolismo , Imuno-Histoquímica , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Neurocinina B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Orquiectomia , Ovariectomia , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/metabolismo , Ovinos/metabolismo , Substância P/análogos & derivados , Substância P/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...